cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139104 Numbers whose binary representation shows the distribution of prime numbers up to the n-th prime, using "0" for primes and "1" for nonprime numbers.

Original entry on oeis.org

2, 4, 18, 74, 1198, 4794, 76718, 306874, 4909998, 314239934, 1256959738, 80445423294, 1287126772718, 5148507090874, 82376113453998, 5272071261055934, 337412560707579838, 1349650242830319354, 86377615541140438718, 1382041848658247019502, 5528167394632988078010
Offset: 1

Views

Author

Omar E. Pol, Apr 08 2008

Keywords

Comments

a(n) is the decimal representation of A139103(n) interpreted as binary number.

Examples

			a(4)=74 because 74 written in base 2 is 1001010 and the string "1001010" shows the distribution of prime numbers up to the 4th prime, using "0" for primes and "1" for nonprime numbers.
		

Crossrefs

Programs

  • Mathematica
    Table[ sum = 0; For[i = 1, i <= Prime[n] , i++, sum = sum*2;
    If[! PrimeQ[i], sum++]]; sum, {n, 1, 21}] (* Robert Price, Apr 03 2019 *)
    Module[{nn=30,t},t=Table[If[PrimeQ[n],0,1],{n,Prime[nn]}];Table[ FromDigits[ Take[t,p],2],{p,Prime[Range[nn]]}]] (* Harvey P. Dale, Jul 15 2019 *)
  • PARI
    a(n) = fromdigits(vector(prime(n), k, !isprime(k)), 2); \\ Michel Marcus, Apr 04 2019

Formula

a(n) = 2 * A139102(n).
From Ridouane Oudra, Aug 27 2019: (Start)
a(n) = 2^prime(n) - 1 - (1/2)*(n + Sum_{i=1..prime(n)} 2^(prime(n)-i)*pi(i)), where prime(n) = A000040(n) and pi(n) = A000720(n)
a(n) = A001348(n) - A121240(n)
a(n) = A118255(A000040(n)). (End)

Extensions

More terms from R. J. Mathar, May 22 2008
a(19)-a(21) from Robert Price, Apr 03 2019