A139146 Interpolation one-half polynomials based on Chebyshev T(x.n) polynomial coefficients(A053120 ): even-> 2*T(x,n); odd->T(x,n) + T(x,n+1).
2, 1, 1, 0, 2, -1, 1, 2, -2, 0, 4, -1, -3, 2, 4, 0, -6, 0, 8, 1, -3, -8, 4, 8, 2, 0, -16, 0, 16, 1, 5, -8, -20, 8, 16, 0, 10, 0, -40, 0, 32
Offset: 1
Examples
{2}, {1, 1}, {0, 2}, {-1, 1, 2}, {-2, 0, 4}, {-1, -3, 2, 4}, {0, -6, 0, 8}, {1, -3, -8, 4,8}, {2, 0, -16, 0, 16}, {1, 5, -8, -20, 8, 16}, {0, 10, 0, -40, 0, 32}
Crossrefs
Cf. A053120.
Programs
-
Mathematica
Clear[p, x] p[x, 0] = 2*ChebyshevT[0, x]; p[x, 1] = ChebyshevT[0, x] + ChebyshevT[1, x]; p[x, 2] = 2*ChebyshevT[1, x]; p[x_, m_] := p[x, m] = If[Mod[m, 2] == 0, 2*ChebyshevT[Floor[m/2], x], ChebyshevT[Floor[m/2], x] + ChebyshevT[Floor[m/2 + 1], x]]; Table[ExpandAll[p[x, n]], {n, 0, 10}]; a = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]
Formula
even->p(x.m)= 2*T(x,n); odd->p(x,m)=T(x,n)+T(x,n+1); out_n,m=Coefficients(p(x,m).
Comments