A139167
Triangle T(n,k) read by rows: the coefficient [x^k] of the polynomial (n-1)! *sum_{i=0..n} Fibonacci(i)*binomial(x,n-i), read by rows, 0<=k
1, 1, 1, 4, 1, 1, 18, 11, 0, 1, 120, 50, 23, -2, 1, 960, 494, 65, 45, -5, 1, 9360, 4344, 1354, -15, 85, -9, 1, 105840, 51876, 10444, 3409, -350, 154, -14, 1, 1370880, 653232, 172444, 13300, 8729, -1232, 266, -20, 1, 19958400, 9654480, 2194380, 483272, -13923, 22449, -3150, 438, -27, 1
Offset: 1
Examples
1; 1, 1; 4, 1, 1; 18, 11, 0, 1; 120, 50, 23, -2, 1; 960, 494, 65, 45, -5, 1; 9360, 4344, 1354, -15,85, -9, 1; 105840, 51876, 10444, 3409, -350, 154, -14, 1; 1370880, 653232, 172444, 13300, 8729, -1232, 266, -20, 1; 19958400, 9654480, 2194380, 483272, -13923, 22449, -3150, 438, -27, 1;
References
- Brendan Hassett, Introduction to algebraic Geometry,Cambridge University Press. New York,2007, page 229
Crossrefs
Cf. A000045.
Programs
-
Maple
B := proc(x,k) mul( (x-i+1)/i,i=1..k) ; end proc: A139167 := proc(n,k) local f,i ; f := 0 ; for i from 0 to n do f := f+combinat[fibonacci](i)*B(x,n-i) ; end do; %*(n-1)! ; coeftayl(%,x=0,k) ; end proc: # R. J. Mathar, May 08 2013
-
Mathematica
Clear[a, p, x] a[0] = 0; a[1] = 1; a[n_] := a[n] = a[n - 1] + a[n - 2]; p[x, 0] = a[0]; p[x_, n_] := p[x, n] = Sum[a[i]*Binomial[x, n - i], {i, 0, n}]; Table[If[n > 0, ExpandAll[(n - 1)!*p[x, n]], 0], {n, 0, 10}]; a = Table[CoefficientList[If[n > 0, ExpandAll[(n - 1)!*p[x, n]], 0], x], {n, 0, 10}]; Flatten[a] Table[Apply[Plus, CoefficientList[If[n > 0, ExpandAll[(n - 1)!*p[x, n]], 0], x]], {n, 0, 10}]
Extensions
Edited by R. J. Mathar, May 08 2013
Comments