cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A178126 Triangle T(n, k) = coefficients of (n+1)!*(binomial(x+n+1, n+1) - binomial(x, n+1)), read by rows.

Original entry on oeis.org

1, 2, 4, 6, 9, 9, 24, 56, 24, 16, 120, 250, 275, 50, 25, 720, 1884, 1350, 960, 90, 36, 5040, 12348, 14896, 5145, 2695, 147, 49, 40320, 114624, 105056, 80416, 15680, 6496, 224, 64, 362880, 986256, 1282284, 605556, 336609, 40824, 13986, 324, 81
Offset: 0

Views

Author

Roger L. Bagula, May 20 2010

Keywords

Examples

			Triangle begins as:
        1;
        2,        4;
        6,        9,        9;
       24,       56,       24,      16;
      120,      250,      275,      50,      25;
      720,     1884,     1350,     960,      90,      36;
     5040,    12348,    14896,    5145,    2695,     147,    49;
    40320,   114624,   105056,   80416,   15680,    6496,   224,    64;
   362880,   986256,  1282284,  605556,  336609,   40824, 13986,   324,  81;
  3628800, 10991520, 11727000, 9582200, 2693250, 1171380, 94500, 27600, 450, 100;
		

References

  • Brendan Hassett, Introduction to algebraic Geometry, Cambridge University Press, New York, 2007, page 214

Crossrefs

Programs

  • Mathematica
    T[n_, k_]:= SeriesCoefficient[Series[Sum[StirlingS1[n+1, j]*((x+n+1)^j -x^j), {j, 0, n+1}], {x, 0, n+1}], k];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, Apr 14 2021 *)
  • Sage
    def T(n,k): return ( sum((-1)^(n+j+1)*stirling_number1(n+1, j)*((x+n+1)^j - x^j) for j in (0..n+1)) ).series(x,n+1).list()[k]
    flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Apr 14 2021

Formula

T(n, k) = coefficients of n!*(binomial(x+n+1, n+1) - binomial(x, n+1)).
From G. C. Greubel, Apr 14 2021: (Start)
T(n, k) = coefficients of Sum_{j=0..n+1} Stirling1(n+1, j)*( (x+n+1)^j - x^j ).
T(n, 0) = (n+1)!.
T(n, n) = (n+1)^2.
Sum_{k=0..n} T(n,k) = (n+2)! - [n=0]. (End)

Extensions

Edited by G. C. Greubel, Apr 14 2021
Showing 1-1 of 1 results.