Original entry on oeis.org
3, 2, 3, 31, 1009, 2, 5702401, 631
Offset: 1
Cf.
A082672,
A089085,
A089130,
A117141,
A007749,
A139056-
A139066,
A020458,
A139068,
A137390,
A139070-
A139075,
A136019,
A136020,
A136026,
A136027.
-
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! + n)/n], k++ ]; AppendTo[a, Prime[(Prime[k]! + n)/n]], {n, 1, 8}]; a
A139074
a(n) = smallest prime p such that p!/n + 1 is prime, or 0 if no such prime exists.
Original entry on oeis.org
2, 2, 3, 5, 7, 3, 11, 7, 26737, 5, 13, 5
Offset: 1
a(1) = 2 because 2 is the first prime and 2!/1 + 1 = 3 is prime
a(2) = 2 because 2 is the first prime and 2!/2 + 1 = 2 is prime
a(3) = 3 because 3!/3 + 1 = 3 is prime
Cf.
A082672,
A089085,
A089130,
A117141,
A007749,
A139056-
A139066,
A020458,
A139068,
A137390,
A139070-
A139075,
A136019,
A136020,
A136026,
A136027.
-
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! + n)/n], k++ ]; AppendTo[a, Prime[k]], {n, 1, 8}]; a
Showing 1-2 of 2 results.
Comments