Original entry on oeis.org
3, 2, 3, 31, 1009, 2, 5702401, 631
Offset: 1
Cf.
A082672,
A089085,
A089130,
A117141,
A007749,
A139056-
A139066,
A020458,
A139068,
A137390,
A139070-
A139075,
A136019,
A136020,
A136026,
A136027.
-
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! + n)/n], k++ ]; AppendTo[a, Prime[(Prime[k]! + n)/n]], {n, 1, 8}]; a
Original entry on oeis.org
9, 13, 22, 23, 72, 73, 74, 82, 83, 84, 85, 88
Offset: 1
A137390
Numbers k for which (9 + k!)/9 is prime.
Original entry on oeis.org
8, 46, 87, 168, 259, 262, 292, 329, 446, 1056, 3562, 11819, 26737
Offset: 1
a(11) = 3562 because 3562 is the 11th natural number for which k!/9 + 1 is prime. 3562 is the new term.
Cf.
A139068 (primes of the form (9 + k!)/9).
-
a = {}; Do[If[PrimeQ[(n! + 9)/9], AppendTo[a, n]], {n, 1, 500}]; a
-
for(n=6,1e4,if(ispseudoprime(n!/9+1),print1(n", "))) \\ Charles R Greathouse IV, Jul 15 2011
-
ABC2 $a!/9+1
a: from 6 to 1000 // Jinyuan Wang, Feb 04 2020
a(11) from Dimitris Zygiridis (dmzyg70(AT)gmail.com), Jul 25 2008
A139206
Smallest son factorial prime p of order n: smallest p such that p!/n-1 is prime.
Original entry on oeis.org
3, 3, 29, 5, 5, 5, 7, 11, 17, 5, 19, 7, 13, 7, 5, 37, 139, 19
Offset: 1
-
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! - n)/n], k++ ]; Print[a]; AppendTo[a, Prime[k]], {n, 1, 100}]; a (*Artur Jasinski*)
-
a(n)=forprime(p=1,,p!%n==0 && ispseudoprime(p!/n-1) && return(p)) \\ - M. F. Hasler, Nov 03 2013
A139207
Smallest father factorial prime p of order n = smallest prime of the form (p!-n)/n where p is prime.
Original entry on oeis.org
5, 2, 2947253997913233984847871999999, 29, 23, 19, 719, 4989599, 39520825343999, 11, 11058645491711999, 419, 479001599, 359, 7, 860234568201646565394748723848806399999999
Offset: 1
Cf.
A139074,
A139189,
A139190,
A139191,
A139192,
A139193,
A139194,
A139195,
A139196,
A139197,
A139198,
A136019,
A136020,
A136026,
A136027.
-
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! - n)/n], k++ ]; Print[a]; AppendTo[a, (Prime[k]! - n)/n], {n, 1, 100}]; a
Original entry on oeis.org
19, 24, 53, 59, 67, 68, 73
Offset: 1
From _M. F. Hasler_, Nov 03 2013: (Start)
The first unknown term in A139206 is A139206(19), which is (if it exists) larger than 25000. Therefore a(1)=19.
The term A139206(24)=3361 is "quite large", therefore a(2)=24.
The next unknown term in A139206 is A139206(53), which is also larger than 25000, if it exists. Therefore a(3)=53. (End)
Showing 1-6 of 6 results.
Comments