Original entry on oeis.org
19, 24, 53, 59, 67, 68, 73
Offset: 1
From _M. F. Hasler_, Nov 03 2013: (Start)
The first unknown term in A139206 is A139206(19), which is (if it exists) larger than 25000. Therefore a(1)=19.
The term A139206(24)=3361 is "quite large", therefore a(2)=24.
The next unknown term in A139206 is A139206(53), which is also larger than 25000, if it exists. Therefore a(3)=53. (End)
Original entry on oeis.org
3, 2, 3, 31, 1009, 2, 5702401, 631
Offset: 1
Cf.
A082672,
A089085,
A089130,
A117141,
A007749,
A139056-
A139066,
A020458,
A139068,
A137390,
A139070-
A139075,
A136019,
A136020,
A136026,
A136027.
-
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! + n)/n], k++ ]; AppendTo[a, Prime[(Prime[k]! + n)/n]], {n, 1, 8}]; a
A139074
a(n) = smallest prime p such that p!/n + 1 is prime, or 0 if no such prime exists.
Original entry on oeis.org
2, 2, 3, 5, 7, 3, 11, 7, 26737, 5, 13, 5
Offset: 1
a(1) = 2 because 2 is the first prime and 2!/1 + 1 = 3 is prime
a(2) = 2 because 2 is the first prime and 2!/2 + 1 = 2 is prime
a(3) = 3 because 3!/3 + 1 = 3 is prime
Cf.
A082672,
A089085,
A089130,
A117141,
A007749,
A139056-
A139066,
A020458,
A139068,
A137390,
A139070-
A139075,
A136019,
A136020,
A136026,
A136027.
-
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! + n)/n], k++ ]; AppendTo[a, Prime[k]], {n, 1, 8}]; a
A139207
Smallest father factorial prime p of order n = smallest prime of the form (p!-n)/n where p is prime.
Original entry on oeis.org
5, 2, 2947253997913233984847871999999, 29, 23, 19, 719, 4989599, 39520825343999, 11, 11058645491711999, 419, 479001599, 359, 7, 860234568201646565394748723848806399999999
Offset: 1
Cf.
A139074,
A139189,
A139190,
A139191,
A139192,
A139193,
A139194,
A139195,
A139196,
A139197,
A139198,
A136019,
A136020,
A136026,
A136027.
-
a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! - n)/n], k++ ]; Print[a]; AppendTo[a, (Prime[k]! - n)/n], {n, 1, 100}]; a
Original entry on oeis.org
9, 13, 22, 23, 72, 73, 74, 82, 83, 84, 85, 88
Offset: 1
Showing 1-5 of 5 results.
Comments