cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A139206 Smallest son factorial prime p of order n: smallest p such that p!/n-1 is prime.

Original entry on oeis.org

3, 3, 29, 5, 5, 5, 7, 11, 17, 5, 19, 7, 13, 7, 5, 37, 139, 19
Offset: 1

Views

Author

Artur Jasinski, Apr 11 2008, Apr 24 2008

Keywords

Comments

For smallest daughter factorial prime p of order n (smallest p such that (p!+n)/n = p!/n + 1 is prime), see A139074.
a(19) is currently unknown, a(20)=5, a(21)=7, a(22)=19.
a(19)>10000, a(23)=71, a(24)=3361. [From Andrew V. Sutherland, Apr 23 2008]
a(25)=17, a(26)=223, a(27)=157, a(28)=7, a(29)=41, a(30)=5, a(31)=31, a(32)=71, a(33)=13, a(34)=37, a(35)=19, a(36)=7, a(37)=47, a(38)=53, a(39)=13, a(40)=5, a(41)=127, a(42)=13, a(43)=67, a(44)=11, a(45)=17, a(46)=43, a(47)=71, a(48)=11, a(49)=19, a(50)=29, a(51)=17, a(52)=17, a(53)>10000.
a(19)>25000, a(53)>25000. [From Sean A. Irvine, Nov 14 2010]
a(54)=11, a(55)=23, a(56)=7, a(57)=433.
a(58)=283, a(59)>1500, a(60..66)=(7,139,239,7,11,13,13), a(67), a(68) > 1300, a(69..72)=(29,7,83,13), a(73)>1000. [From M. F. Hasler, Nov 03 2013]
Sequence A151900 (tentatively?) lists "singular indices", i.e., those for which a(n) is difficult to find. - M. F. Hasler, Nov 03 2013

Crossrefs

Programs

  • Mathematica
    a = {}; Do[k = 1; While[ ! PrimeQ[(Prime[k]! - n)/n], k++ ]; Print[a]; AppendTo[a, Prime[k]], {n, 1, 100}]; a (*Artur Jasinski*)
  • PARI
    a(n)=forprime(p=1,,p!%n==0 && ispseudoprime(p!/n-1) && return(p)) \\ - M. F. Hasler, Nov 03 2013

Extensions

Edited by M. F. Hasler, Nov 03 2013

A151901 Singular indices in A139074.

Original entry on oeis.org

9, 13, 22, 23, 72, 73, 74, 82, 83, 84, 85, 88
Offset: 1

Views

Author

Artur Jasinski, Apr 12 2008

Keywords

Comments

Definition: Singular indices in A139074 are numbers n such that it doesn't exist a prime p such that (n+p!)/n is prime or if this prime does exist then it is very big.

Crossrefs

Showing 1-2 of 2 results.