cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A133049 Squares of Mersenne primes A000668(n).

Original entry on oeis.org

9, 49, 961, 16129, 67092481, 17179607041, 274876858369, 4611686014132420609, 5316911983139663487003542222693990401, 383123885216472214589586755549637256619304505646776321
Offset: 1

Views

Author

Omar E. Pol, Oct 30 2007, Apr 23 2008

Keywords

Comments

Sum of last A000043(n) divisors of the n-th even perfect number. In other words; sum of divisors that are not powers of 2 of the n-th even perfect number, or sum of divisors that are multiples of the n-th Mersenne prime A000668(n) of the n-th even perfect number. See A139247 for more information.
See the structure of the divisors of perfect numbers in A135652, A135653, A135654 and A135655.

Examples

			a(3)=961 because the 3rd Mersenne prime is 31 and 31^2=961.
		

Crossrefs

Programs

  • Mathematica
    Select[2^Range[1000] - 1, PrimeQ]^2 (* G. C. Greubel, Oct 03 2017 *)
  • PARI
    forprime(p=2, 1000, if(ispseudoprime(2^p-1), print1((2^p-1)^2", "))) \\ G. C. Greubel, Oct 03 2017

Formula

a(n) = A000668(n)^2

Extensions

More terms from Olaf Voß, Feb 13 2008

A139246 Triangle read by rows: row n lists the proper divisors of n-th perfect number A000396(n).

Original entry on oeis.org

1, 2, 3, 1, 2, 4, 7, 14, 1, 2, 4, 8, 16, 31, 62, 124, 248, 1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8191, 16382, 32764, 65528, 131056, 262112, 524224, 1048448, 2096896, 4193792, 8387584, 16775168, 1
Offset: 1

Views

Author

Omar E. Pol, Apr 22 2008, corrected Apr 25 2008

Keywords

Comments

Rows n has A133033(n) terms.
The n-th row sum is the n-th perfect number A000396(n).

Examples

			Triangle begins:
  1, 2, 3
  1, 2, 4, 7, 14
  1, 2, 4, 8, 16, 31, 62, 124, 248
  1, 2, 4, 8, 16, 32, 64, 127, 254, 508, 1016, 2032, 4064
  ...
		

Crossrefs

Programs

  • Mathematica
    Table[Most[Divisors[PerfectNumber[n]]],{n,6}]//Flatten (* Harvey P. Dale, Jul 08 2024 *)

A233757 Triangle read by rows: T(n,k) = (2^n-1)*2^(k-1), for n >= 1 and 1<=k<=n.

Original entry on oeis.org

1, 3, 6, 7, 14, 28, 15, 30, 60, 120, 31, 62, 124, 248, 496, 63, 126, 252, 504, 1008, 2016, 127, 254, 508, 1016, 2032, 4064, 8128, 255, 510, 1020, 2040, 4080, 8160, 16320, 32640, 511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816, 1023, 2046, 4092
Offset: 1

Views

Author

Omar E. Pol, Jan 12 2014

Keywords

Comments

Column 1 gives the positive terms of A000225.
Leading diagonal gives the positive terms of A006516.
The sum of row n is T(n,1)^2 = A000225(n)^2, hence row sums give A060867.
If n = A000043(m) then T(n,1) = A000668(m) and row n lists last n divisors of m-th even perfect number, which are also the divisors that are multiples of m-th Mersenne prime, for m >= 1.
If n = A000043(m) then T(n,n) = A000396(m), assuming there are no odd perfect numbers, for m >= 1.

Examples

			Triangle begins:
1;
3, 6;
7, 14, 28;
15, 30, 60, 120;
31, 62, 124, 248, 496;
63, 126, 252, 504, 1008, 2016;
127, 254, 508, 1016, 2032, 4064, 8128;
255, 510, 1020, 2040, 4080, 8160, 16320, 32640;
511, 1022, 2044, 4088, 8176, 16352, 32704, 65408, 130816;
...
		

Crossrefs

Programs

  • Mathematica
    Table[(2^n-1)2^(k-1),{n,10},{k,n}]//Flatten (* Harvey P. Dale, Oct 10 2018 *)

Formula

T(n,k) = A000225(n)*A000079(k-1), n >= 1, 1<=k<=n.
Showing 1-3 of 3 results.