A139256 Twice even perfect numbers. Also a(n) = M(n)*(M(n)+1), where M(n) is the n-th Mersenne prime A000668(n).
12, 56, 992, 16256, 67100672, 17179738112, 274877382656, 4611686016279904256, 5316911983139663489309385231907684352, 383123885216472214589586756168607276261994643096338432
Offset: 1
Keywords
Examples
a(3) = 992 because the third Mersenne prime A000668(3) is 31 and 31*(31+1) = 31*32 = 992. a(3) = 992 because the sum of the divisors of the third perfect number is 1 + 2 + 4 + 8 + 16 + 31 + 62 + 124 + 248 + 496 = 992. - _Omar E. Pol_, Dec 05 2016 From _Omar E. Pol_, Aug 13 2021: (Start) Illustration of initial terms in which a(n) is represented as the sum of the divisors of the n-th even perfect number P(n). ------------------------------------------------------------------------- n P(n) a(n) Diagram: 1 2 ------------------------------------------------------------------------- _ _ | | | | | | | | _ _| | | | | _| | | _ _ _| _| | | 1 6 12 |_ _ _ _| | | | | | | | | | | | | | | | | _ _ _ _ _| | | _ _ _ _ _| | | _ _| | _ _| _ _| | _| _| _| | _| _ _ _| | | _ _ _| | | | | | | _ _ _ _ _ _ _ _ _ _ _ _ _ _| | 2 28 56 |_ _ _ _ _ _ _ _ _ _ _ _ _ _ _| . a(n) equals the area (also the number of cells) in the n-th diagram. For n = 3, P(3) = 496 and a(3) = 992, the diagram is too large to include here. To draw that diagram note that the lengths of the line segments of the smallest Dyck path are [248, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 248] and the lengths of the line segments of the largest Dyck path are [249, 83, 42, 25, 17, 13, 9, 7, 6, 5, 5, 3, 4, 2, 3, 2, 2, 2, 2, 2, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 4, 3, 5, 5, 6, 7, 9, 13, 17, 25, 42, 83, 249]. For a definition of these numbers related to partitions into consecutive parts see A237591. (End)
Links
- Walter A. Kehowski, Power-spectral Numbers, ResearchGate (2024); also available at vixra.org.
- Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos.
Programs
-
Mathematica
DeleteCases[2 Map[(# (# + 1))/2 &, Select[2^Range[100] - 1, PrimeQ]], k_ /; OddQ@ k] (* Michael De Vlieger, Dec 05 2016, after Harvey P. Dale at A000396 *)
Formula
Extensions
More terms from Omar E. Pol, Jun 07 2012
Comments