A139294 a(n) = 2^(2p - 1), where p is the n-th Mersenne prime A000668(n).
32, 8192, 2305843009213693952, 14474011154664524427946373126085988481658748083205070504932198000989141204992
Offset: 1
Keywords
Crossrefs
Programs
-
Mathematica
A000668 := Select[2^Range[500] - 1, PrimeQ]; Table[2^(2*A000668[[n]] - 1), {n, 1, 5}] (* G. C. Greubel, Oct 03 2017 *) a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 3); Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)
-
PARI
\p 100 print1("a(n): "); forprime(q=2, 7, p=2^q-1; if(isprime(p), print1(2^(2*p-1)", "))); print1("\nNumber of digits in a(n): "); forprime(q=2, 127, p=2^q-1; if(isprime(p), print1(ceil((2*p-1)*log(2)/log(10))", "))) \\ Jens Kruse Andersen, Jul 14 2014
Formula
a(n) = 2^(2*A000668(n)-1).
Comments