cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139294 a(n) = 2^(2p - 1), where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

32, 8192, 2305843009213693952, 14474011154664524427946373126085988481658748083205070504932198000989141204992
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Comments

Next terms have 4932, 78913, 315652, 1292913986, and 1388255822130839283 decimal digits. - Jens Kruse Andersen, Jul 14 2014

Crossrefs

Programs

  • Mathematica
    A000668 := Select[2^Range[500] - 1, PrimeQ]; Table[2^(2*A000668[[n]] - 1), {n, 1, 5}] (* G. C. Greubel, Oct 03 2017 *)
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 3); Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)
  • PARI
    \p 100
    print1("a(n): "); forprime(q=2, 7, p=2^q-1; if(isprime(p), print1(2^(2*p-1)", ")));
    print1("\nNumber of digits in a(n): "); forprime(q=2, 127, p=2^q-1; if(isprime(p), print1(ceil((2*p-1)*log(2)/log(10))", "))) \\ Jens Kruse Andersen, Jul 14 2014

Formula

a(n) = 2^(2*A000668(n)-1).