cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A139306 Ultraperfect numbers: a(n) = 2^(2*p - 1), where p is A000043(n).

Original entry on oeis.org

8, 32, 512, 8192, 33554432, 8589934592, 137438953472, 2305843009213693952, 2658455991569831745807614120560689152, 191561942608236107294793378393788647952342390272950272
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Comments

Sum of n-th even perfect number and n-th even superperfect number.
Also, sum of n-th perfect number and n-th superperfect number, if there are no odd perfect and odd superperfect numbers, then the n-th perfect number is the difference between a(n) and the n-th superperfect number (see A135652, A135653, A135654 and A135655).

Examples

			a(5) = 33554432 because A000043(5) = 13 and 2^(2*13 - 1) = 2^25 = 33554432.
Also, if there are no odd perfect and odd superperfect numbers then we can write a(5) = A000396(5) + A019279(5) = A000396(5) + A061652(5) = 33554432.
		

Crossrefs

Programs

  • Mathematica
    2^(2 * MersennePrimeExponent[Range[10]] - 1) (* Amiram Eldar, Oct 17 2024 *)

Formula

a(n) = 2^(2*A000043(n) - 1). Also, a(n) = 2^A133033(n), if there are no odd perfect numbers. Also, a(n) = A000396(n) + A019279(n), if there are no odd perfect and odd superperfect numbers. Also, a(n) = A000396(n) + A061652(n), if there are no odd perfect numbers, then we can write: perfect number A000396(n) = a(n) - A061652(n).
a(n) = A061652(n)*(A000668(n)+1) = A061652(n)*A072868(n). - Omar E. Pol, Apr 13 2008

A139286 a(n) = 2^(2*prime(n) - 1).

Original entry on oeis.org

8, 32, 512, 8192, 2097152, 33554432, 8589934592, 137438953472, 35184372088832, 144115188075855872, 2305843009213693952, 9444732965739290427392, 2417851639229258349412352, 38685626227668133590597632, 9903520314283042199192993792
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

Extensions

Corrected and extended by Harvey P. Dale, Dec 01 2017

A139295 a(n) = 2^(2p - 1)-1, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

31, 8191, 2305843009213693951, 14474011154664524427946373126085988481658748083205070504932198000989141204991
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 3) - 1; Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n)-1)-1 = A139294(n)-1.

A139296 a(n) = 2^(2p - 1)/2, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

16, 4096, 1152921504606846976, 7237005577332262213973186563042994240829374041602535252466099000494570602496
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Comments

a(5) has 4931 digits and is too large to include. - R. J. Mathar, May 30 2008

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 4); Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n)-1)/2.

Extensions

One more term from R. J. Mathar, May 30 2008

A139297 a(n) = 2^(2p - 1)/2-1, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

15, 4095, 1152921504606846975, 7237005577332262213973186563042994240829374041602535252466099000494570602495
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 4) - 1; Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n)-1)/2-1 = A139296(n)-1.

Extensions

a(4) from Amiram Eldar, Jul 10 2025

A139298 a(n) = 2^(2p - 1)/4, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

8, 2048, 576460752303423488, 3618502788666131106986593281521497120414687020801267626233049500247285301248
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 5); Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n) - 1)/4 = A139294(n)/4.

A139299 a(n) = 2^(2p - 1)/4-1, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

7, 2047, 576460752303423487, 3618502788666131106986593281521497120414687020801267626233049500247285301247
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 5) - 1; Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n)-1)/4-1 = A139294(n)/4-1 = A139298(n)-1.

Extensions

a(4) from Amiram Eldar, Jul 10 2025

A139300 a(n) = 2^(2p - 1)/8, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

4, 1024, 288230376151711744, 1809251394333065553493296640760748560207343510400633813116524750123642650624
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 6); Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n)-1)/8 = A139294(n)/8.

Extensions

a(4) from Amiram Eldar, Jul 10 2025

A139301 a(n) = (2^(2p - 1)/8)-1, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

3, 1023, 288230376151711743, 1809251394333065553493296640760748560207343510400633813116524750123642650623
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 6) - 1; Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = (2^(2*A000668(n)-1)/8)-1 = (A139294(n)/8)-1.

Extensions

a(4) from Amiram Eldar, Jul 10 2025

A139302 a(n) = 2^(2p - 1)/16, where p is the n-th Mersenne prime A000668(n).

Original entry on oeis.org

2, 512, 144115188075855872, 904625697166532776746648320380374280103671755200316906558262375061821325312
Offset: 1

Views

Author

Omar E. Pol, Apr 13 2008

Keywords

Crossrefs

Programs

  • Mathematica
    a[n_] := 2^(2^(MersennePrimeExponent[n] + 1) - 7); Array[a, 4] (* Amiram Eldar, Jul 10 2025 *)

Formula

a(n) = 2^(2*A000668(n)-1)/16 = A139294(n)/16.

Extensions

a(4) from Amiram Eldar, Jul 10 2025
Showing 1-10 of 20 results. Next