cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139375 A Fibonacci-Catalan triangle. Also called the Fibonacci triangle.

Original entry on oeis.org

1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 12, 9, 4, 1, 8, 31, 26, 14, 5, 1, 13, 85, 77, 46, 20, 6, 1, 21, 248, 235, 150, 73, 27, 7, 1, 34, 762, 741, 493, 258, 108, 35, 8, 1, 55, 2440, 2406, 1644, 903, 410, 152, 44, 9, 1, 89, 8064, 8009
Offset: 0

Views

Author

Paul Barry, Apr 15 2008

Keywords

Comments

First column is the Fibonacci numbers A000045(n+1). The second column is A090826.
Row sums are A090826(n+1). Diagonal sums are A139376. Inverse array is (1 - x + 2x^3 - x^4, x(1-x)), A201167.
Essentially A185937 with trailing zeros removed. - Ralf Stephan, Jan 01 2014

Examples

			Triangle begins
1,
1, 1,
2, 2, 1,
3, 5, 3, 1,
5, 12, 9, 4, 1,
8, 31, 26, 14, 5, 1,
13, 85, 77, 46, 20, 6, 1,
21, 248, 235, 150, 73, 27, 7, 1,
34, 762, 741, 493, 258, 108, 35, 8, 1
The production matrix for this array is
1, 1,
1, 1, 1,
-1, 1, 1, 1,
0, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1,
0, 1, 1, 1, 1, 1, 1
		

Programs

  • Maple
    RIORDAN := proc(d,h,n,k)
        d*h^k ;
        expand(%) ;
        coeftayl(%,x=0,n) ;
    end proc:
    A139375 := proc(n,k)
        RIORDAN(1/(1-x-x^2),(1-sqrt(1-4*x))/2,n,k) ;
    end proc: # R. J. Mathar, Jul 09 2013
  • Mathematica
    T[n_, 0]:= Fibonacci[n + 1]; T[n_, k_]:= k*Sum[Fibonacci[i + 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 20 2016 *)

Formula

Riordan array (1/(1-x-x^2), xc(x)), c(x) the g.f. of A000108.
T(n,k) = k * Sum_{i=0..n-k} (Fibonacci(i+1)*binomial(2*(n-i)-k-1,n-i-1)/(n-i)) if k>0, and Fibonacci(n+1) if k=0. - Vladimir Kruchinin, Mar 09 2011

Extensions

Alternative name added by N. J. A. Sloane, Nov 27 2011