A139375 A Fibonacci-Catalan triangle. Also called the Fibonacci triangle.
1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 12, 9, 4, 1, 8, 31, 26, 14, 5, 1, 13, 85, 77, 46, 20, 6, 1, 21, 248, 235, 150, 73, 27, 7, 1, 34, 762, 741, 493, 258, 108, 35, 8, 1, 55, 2440, 2406, 1644, 903, 410, 152, 44, 9, 1, 89, 8064, 8009
Offset: 0
Examples
Triangle begins 1, 1, 1, 2, 2, 1, 3, 5, 3, 1, 5, 12, 9, 4, 1, 8, 31, 26, 14, 5, 1, 13, 85, 77, 46, 20, 6, 1, 21, 248, 235, 150, 73, 27, 7, 1, 34, 762, 741, 493, 258, 108, 35, 8, 1 The production matrix for this array is 1, 1, 1, 1, 1, -1, 1, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Tian-Xiao He and Renzo Sprugnoli, Sequence characterization of Riordan arrays, Discrete Math. 309 (2009), no. 12, 3962-3974. [_N. J. A. Sloane_, Nov 26 2011]
Programs
-
Maple
RIORDAN := proc(d,h,n,k) d*h^k ; expand(%) ; coeftayl(%,x=0,n) ; end proc: A139375 := proc(n,k) RIORDAN(1/(1-x-x^2),(1-sqrt(1-4*x))/2,n,k) ; end proc: # R. J. Mathar, Jul 09 2013
-
Mathematica
T[n_, 0]:= Fibonacci[n + 1]; T[n_, k_]:= k*Sum[Fibonacci[i + 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; Table[T[n, k], {n, 0, 49}, {k, 0, n}] // Flatten (* G. C. Greubel, Oct 20 2016 *)
Formula
Riordan array (1/(1-x-x^2), xc(x)), c(x) the g.f. of A000108.
T(n,k) = k * Sum_{i=0..n-k} (Fibonacci(i+1)*binomial(2*(n-i)-k-1,n-i-1)/(n-i)) if k>0, and Fibonacci(n+1) if k=0. - Vladimir Kruchinin, Mar 09 2011
Extensions
Alternative name added by N. J. A. Sloane, Nov 27 2011
Comments