cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A135582 Expansion of 1/((1-x^2*c(x))(1-x-2x^2)) where c(x) is the g.f. of A000108.

Original entry on oeis.org

1, 1, 4, 7, 18, 39, 95, 232, 606, 1663, 4839, 14807, 47330, 156611, 532308, 1846622, 6507103, 23210020, 83590477, 303425693, 1108650850, 4073443378, 15039391464, 55763147423, 207543422052, 775082175863, 2903508757053, 10907257755616
Offset: 0

Views

Author

Paul Barry, Apr 15 2008

Keywords

Comments

Diagonal sums of the Jacobsthal-Catalan triangle A139377.

Crossrefs

Programs

  • Mathematica
    Jacobsthal[n_]:= (2^n - (-1)^n)/3; g[0]:= 1; g[n_] := Sum[(i/(n - i)) * Binomial[2*n - 3*i - 1, n - 2*i], {i, 0, Floor[n/2]}]; a[n_]:= Sum[Jacobsthal[k + 1]*g[n - k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Oct 20 2016 *)

Formula

a(n) = Sum_{k=0..n} J(k+1)*A132364(n-k) where J(n)=A001045(n), Jacobsthal numbers.
Conjecture: (-n+1)*a(n) +6*(n-2)*a(n-1) +(-7*n+19)*a(n-2) +(-7*n+13)*a(n-3) +(13*n-31)*a(n-4) +2*(-n+4)*a(n-5) +4*(-2*n+5)*a(n-6)=0. - R. J. Mathar, Feb 23 2015

A139379 A Jacobsthal Catalan convolution.

Original entry on oeis.org

0, 1, 2, 6, 15, 41, 113, 327, 982, 3066, 9892, 32820, 111390, 385042, 1350722, 4795246, 17191535, 62139697, 226167557, 828085651, 3047683955, 11267975677, 41829610607, 155848125601, 582566960465, 2184167358991, 8211247681373
Offset: 0

Views

Author

Paul Barry, Apr 15 2008

Keywords

Comments

Second column of A139377. Row sums of A139377 give a(n+1).

Formula

G.f.: xc(x)/(1-x-2x^2), c(x) the g.f. of A000108; a(n)=sum{k=0..n, A000108(k)*A001045(n-k)};
D-finite with recurrence n*a(n) +(6-5*n)*a(n-1) +2*(n-3)*a(n-2) +4*(2*n-3)*a(n-3)=0. - R. J. Mathar, Oct 25 2012
Showing 1-2 of 2 results.