A135582 Expansion of 1/((1-x^2*c(x))(1-x-2x^2)) where c(x) is the g.f. of A000108.
1, 1, 4, 7, 18, 39, 95, 232, 606, 1663, 4839, 14807, 47330, 156611, 532308, 1846622, 6507103, 23210020, 83590477, 303425693, 1108650850, 4073443378, 15039391464, 55763147423, 207543422052, 775082175863, 2903508757053, 10907257755616
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..500
Programs
-
Mathematica
Jacobsthal[n_]:= (2^n - (-1)^n)/3; g[0]:= 1; g[n_] := Sum[(i/(n - i)) * Binomial[2*n - 3*i - 1, n - 2*i], {i, 0, Floor[n/2]}]; a[n_]:= Sum[Jacobsthal[k + 1]*g[n - k], {k, 0, n}]; Table[a[n], {n, 0, 25}] (* G. C. Greubel, Oct 20 2016 *)
Formula
Conjecture: (-n+1)*a(n) +6*(n-2)*a(n-1) +(-7*n+19)*a(n-2) +(-7*n+13)*a(n-3) +(13*n-31)*a(n-4) +2*(-n+4)*a(n-5) +4*(-2*n+5)*a(n-6)=0. - R. J. Mathar, Feb 23 2015
Comments