cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A139377 A Jacobsthal-Catalan triangle.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 5, 6, 3, 1, 11, 15, 10, 4, 1, 21, 41, 30, 15, 5, 1, 43, 113, 92, 51, 21, 6, 1, 85, 327, 284, 171, 79, 28, 7, 1, 171, 982, 897, 570, 286, 115, 36, 8, 1, 341, 3066, 2895, 1913, 1016, 446, 160, 45, 9, 1
Offset: 0

Views

Author

Paul Barry, Apr 15 2008

Keywords

Comments

First column is A001045(n+1). Second column is A139379. Row sums are A139379(n+1).
Diagonal sums are A135582. Inverse of the Riordan array (1-x-x^2+4x^3-2x^4,x(1-x)).

Examples

			Triangle begins
    1;
    1,   1;
    3,   2,   1;
    5,   6,   3,   1;
   11,  15,  10,   4,   1;
   21,  41,  30,  15,   5,   1;
   43, 113,  92,  51,  21,   6,   1;
   85, 327, 284, 171,  79,  28,   7,   1;
  171, 982, 897, 570, 286, 115,  36,   8,   1;
The production matrix for this array is
   1, 1,
   2, 1, 1,
  -2, 1, 1, 1,
   0, 1, 1, 1, 1,
   0, 1, 1, 1, 1, 1,
   0, 1, 1, 1, 1, 1, 1,
   0, 1, 1, 1, 1, 1, 1
		

Crossrefs

Cf. A001045 (first column), A139379 (second column and row sums), A135582 (sums along shallow diagonals).

Programs

  • Maple
    #define auxiliary sequence
    with(combinat):
    b := proc (n)
      (2/3)*(1+I)^(n-1) + (2/3)*(1-I)^(n-1) - (4/3)*(1+I)^(n-2)-(4/3)*(1-I)^(n-2) + (1/3)*(-1)^n*fibonacci(n+1) + (2/3)*(-1)^n*fibonacci(n);
    end proc:
    A139377 := proc (n, k)
      add(b(j)*binomial(2*n-k-j, n), j = 0..n-k);
    end proc:
    #display sequence as a triangle
    for n from 0 to 10 do
      seq(A139377(n, k), k = 0..n);
    end do; # Peter Bala, Feb 20 2018

Formula

Riordan array (1/(1-x-2x^2), xc(x)) where c(x) is the g.f. of A000108
From Peter Bala, Feb 20 2018: (Start)
Define a(n) = floor(2^(n+2)/3) - floor(2^(n+1)/3) = A001045(n+1). Then T(n,0) = a(n) and T(n,k) = Sum_{j = 0..n-k} a(j)*k/(2*n-k-2*j)*binomial(2*n-k-2*j,n-k-j) for 1 <= k <= n.
Define b(n) = (2/3)*(1+i)^(n-1) + (2/3)*(1-i)^(n-1) - (4/3)*(1+i)^(n-2) - (4/3)*(1-i)^(n-2) + (1/3)*(-1)^n*Fibonacci(n+1) + (2/3)*(-1)^n*Fibonacci(n). Then T(n,k) = Sum_{j = 0..n-k} b(j)*binomial(2*n-k-j,n) for 0 <= k <= n.
The n-th row polynomial in descending powers of x is the n-th Taylor polynomial of the rational function (1 - 2*x)/((1 - x)*(1 + x - x^2)*(1 - 2*x + 2*x^2)) * 1/(1 - x)^n about 0. For example, for n = 4, (1 - 2*x)/((1 - x)*(1 + x - x^2)*(1 - 2*x + 2*x^2)) * 1/(1 - x)^4 = (11*x^4 + 15*x^3 + 10*x^2 + 4*x + 1) + O(x^5). (End)
Showing 1-1 of 1 results.