cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A139480 a(n) = A000043(n) - 3.

Original entry on oeis.org

0, 2, 4, 10, 14, 16, 28, 58, 86, 104, 124, 518, 604, 1276, 2200, 2278, 3214, 4250, 4420, 9686, 9938, 11210, 19934, 21698, 23206, 44494, 86240, 110500, 132046, 216088, 756836, 859430, 1257784, 1398266, 2976218, 3021374, 6972590, 13466914, 20996008, 24036580, 25964948
Offset: 2

Views

Author

Artur Jasinski, Apr 22 2008

Keywords

Comments

2^a(n)-1 is divisible by 3. For (2^a(n)-1)/3 see A124477.
For a(n)/2 see A139481.

Crossrefs

Programs

  • Mathematica
    MersennePrimeExponent[Range[2, 48]] - 3 (* Amiram Eldar, Oct 17 2024 *)

Extensions

Definition corrected by Omar E. Pol, May 23 2008
Edited by N. J. A. Sloane, May 23 2008
a(40)-a(42) from Amiram Eldar, Oct 17 2024

A174288 Primes p such that 8*2^(2p)-1 is also prime.

Original entry on oeis.org

2, 5, 7, 29, 43, 1607, 4969, 9967, 22247, 699133, 1510687, 21321899
Offset: 1

Views

Author

Vincenzo Librandi, Mar 15 2010

Keywords

Comments

These are the primes in A139481. - R. J. Mathar, Mar 17 2010

Examples

			For p = 2, 8*2^4-1 = 127; p = 5, 8*2^10-1 = 8191; p = 7, 8*2^14-1 = 131071.
		

Crossrefs

Cf. A139481.

Programs

  • Magma
    [p: p in PrimesUpTo(4500)| IsPrime(8*2^(2*p)-1)];
  • Mathematica
    Select[(MersennePrimeExponent[Range[48]] - 3) / 2, PrimeQ] (* Amiram Eldar, Jul 14 2025 *)

Extensions

a(7)-a(10) from Vincenzo Librandi, Jul 13 2025
a(11)-a(12) from Amiram Eldar, Jul 14 2025
Showing 1-2 of 2 results.