cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139491 Numbers arising in A139490.

Original entry on oeis.org

3, 8, 9, 12, 15, 16, 21, 24, 40, 45, 48, 60, 72, 120, 168, 240, 840, 1848
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008, Apr 26 2008

Keywords

Comments

M. F. Hasler, Apr 24 2008, observed that the numbers in this sequence are differences of two squares. For example: 3=2^2-1^2, 8=3^2-1^2, 9=5^2-4^2, 15=4^2-1^2, 16=5^2-3^2, 21=5^2-2^2, 24=5^2-1^2, 40=7^2-3^2, 45=7^2-2^2, 48=7^2-1^2, 60=8^2-2^2.
This sequence is a subsequence of A024352.
These numbers appear to be a subset of the idoneal numbers A000926. If so, then the sequence is probably complete. - T. D. Noe, Apr 27 2009

Crossrefs

Programs

  • Mathematica
    f = 200; g = 300; h = 30; j = 100; b = {}; Do[a = {}; Do[Do[If[PrimeQ[x^2 + n y^2], AppendTo[a, x^2 + n y^2]], {x, 0, g}], {y, 1, g}]; AppendTo[b, Take[Union[a], h]], {n, 1, f}]; Print[b]; c = {}; Do[a = {}; Do[Do[If[PrimeQ[n^2 + w*n*m + m^2], AppendTo[a, n^2 + w*n*m + m^2]], {n, m, g}], {m, 1, g}]; AppendTo[c, Take[Union[a], h]], {w, 1, j}]; Print[c]; bb = {}; cc = {}; Do[Do[If[b[[p]] == c[[q]], AppendTo[bb, p]; AppendTo[cc, q]], {p, 1, f}], {q, 1, j}]; Union[bb]

Extensions

Extended by T. D. Noe, Apr 27 2009