cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A139492 Primes of the form x^2 + 5x*y + y^2 for x and y nonnegative.

Original entry on oeis.org

7, 37, 43, 67, 79, 109, 127, 151, 163, 193, 211, 277, 331, 337, 373, 379, 421, 457, 463, 487, 499, 541, 547, 571, 613, 631, 673, 709, 739, 751, 757, 823, 877, 883, 907, 919, 967, 991, 1009, 1033, 1051, 1087, 1093, 1117, 1129, 1171, 1201, 1213, 1297, 1303
Offset: 1

Views

Author

Artur Jasinski, Apr 24 2008

Keywords

Comments

Reduced form is [1, 3, -3]. Discriminant = 21. Class number = 2.
Values of the quadratic form are {0, 1, 3, 4} mod 6, so this is a subsequence of A002476. - R. J. Mathar, Jul 30 2008
It can be checked that the primes p of the form x^2 + n*x*y + y^2, n >= 3, where x and y are nonnegative, depend on n mod 6 as follows: n mod 6 = 0 => p mod 12 = {1,5}; n mod 6 = 1 => p mod 12 = {1,7}; n mod 6 = 2 => p mod 12 = {1}; n mod 6 = 3 => p mod 12 = {1,5,7,11}; n mod 6 = 4 => p mod 12 = {1}; n mod 6 = 5 => p mod 12 = {1,7}. - Walter Kehowski, Jun 01 2008

Examples

			a(1) = 7 because we can write 7 = 1^2 + 5*1*1 + 1^2.
		

References

  • Z. I. Borevich and I. R. Shafarevich, Number Theory.
  • David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.

Crossrefs

Primes in A243172.
For a list of sequences giving numbers and/or primes represented by binary quadratic forms, see the "Binary Quadratic Forms and OEIS" link.

Programs

  • Mathematica
    a = {}; w = 5; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]
  • Sage
    # uses[binaryQF]
    # The function binaryQF is defined in the link 'Binary Quadratic Forms'.
    Q = binaryQF([1, 5, 1])
    print(Q.represented_positives(1303, 'prime')) # Peter Luschny, May 12 2021