A139492 Primes of the form x^2 + 5x*y + y^2 for x and y nonnegative.
7, 37, 43, 67, 79, 109, 127, 151, 163, 193, 211, 277, 331, 337, 373, 379, 421, 457, 463, 487, 499, 541, 547, 571, 613, 631, 673, 709, 739, 751, 757, 823, 877, 883, 907, 919, 967, 991, 1009, 1033, 1051, 1087, 1093, 1117, 1129, 1171, 1201, 1213, 1297, 1303
Offset: 1
Keywords
Examples
a(1) = 7 because we can write 7 = 1^2 + 5*1*1 + 1^2.
References
- Z. I. Borevich and I. R. Shafarevich, Number Theory.
- David A. Cox, "Primes of the Form x^2 + n y^2", Wiley, 1989.
Links
- Peter Luschny, Binary Quadratic Forms
- N. J. A. Sloane et al., Binary Quadratic Forms and OEIS: Index to related sequences, programs, references. OEIS wiki, June 2014.
- D. B. Zagier, Zetafunktionen und quadratische Körper, Springer, 1981.
Crossrefs
Programs
-
Mathematica
a = {}; w = 5; k = 1; Do[Do[If[PrimeQ[n^2 + w*n*m + k*m^2], AppendTo[a, n^2 + w*n*m + k*m^2]], {n, m, 400}], {m, 1, 400}]; Union[a]
-
Sage
# uses[binaryQF] # The function binaryQF is defined in the link 'Binary Quadratic Forms'. Q = binaryQF([1, 5, 1]) print(Q.represented_positives(1303, 'prime')) # Peter Luschny, May 12 2021
Comments