A139513 Primes congruent to {1, 3, 7, 9} mod 20.
3, 7, 23, 29, 41, 43, 47, 61, 67, 83, 89, 101, 103, 107, 109, 127, 149, 163, 167, 181, 223, 227, 229, 241, 263, 269, 281, 283, 307, 347, 349, 367, 383, 389, 401, 409, 421, 443, 449, 461, 463, 467, 487, 503, 509, 521, 523, 541, 547, 563, 569, 587, 601, 607, 641
Offset: 1
References
- Dirichlet & Dedekind, Lectures on Number Theory (English Translation 1999), p. 119.
- David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989, p. 14 (1.8), p. 32 (2.19).
Links
Programs
-
Magma
[ p: p in PrimesUpTo(700) | p mod 20 in [1,3,7,9] ]; // Vincenzo Librandi, Aug 15 2012
-
Mathematica
a = {}; Do[If[MemberQ[{1, 3, 7, 9}, Mod[Prime[n], 20]], AppendTo[a, Prime[n]]], {n, 1, 200}]; a (*Artur Jasinski*) Select[Prime[Range[200]],MemberQ[{1,3,7,9},Mod[#,20]]&] (* Vincenzo Librandi, Aug 15 2012 *)
-
PARI
select(p->my(k=p%20); k==1 || k==3 || k==7 || k==9, primes(100)) \\ Charles R Greathouse IV, Nov 29 2016
Formula
a(n) ~ 2n log n. - Charles R Greathouse IV, Nov 29 2016
Legendre symbol (-5, a(n)) = +1. One sets (-5, 5) = 0 and for odd primes p == -1, -3, -7, -9 (mod 20) (-5, p) = -1, given in A003626. - Wolfdieter Lang, Mar 05 2021
Comments