A139582 Twice partition numbers.
2, 2, 4, 6, 10, 14, 22, 30, 44, 60, 84, 112, 154, 202, 270, 352, 462, 594, 770, 980, 1254, 1584, 2004, 2510, 3150, 3916, 4872, 6020, 7436, 9130, 11208, 13684, 16698, 20286, 24620, 29766, 35954, 43274, 52030, 62370, 74676, 89166, 106348, 126522, 150350, 178268, 211116, 249508, 294546, 347050, 408452
Offset: 0
Examples
The number of partitions of 6 is 11, then a(6) = 2*11 = 22.
Links
- V. Modrak, D. Marton, A framework for generating and complexity assessment of assembly supply chains, in Nonlinear Science and Complexity (NSC), 2012 IEEE 4th International Conference on, Date of Conference: 6-11 Aug. 2012; Digital Object Identifier: 10.1109/NSC.2012.6304712. - From _N. J. A. Sloane_, Dec 27 2012
- V. Modrak, D. Marton, Development of Metrics and a Complexity Scale for the Topology of Assembly Supply Chains, Entropy 2013, 15, 4285-4299; doi:10.3390/e15104285.
- V. Modrak, D. Marton, Approaches to Defining and Measuring Assembly Supply Chain Complexity, Discontinuity and Complexity in Nonlinear Physical Systems, Vol. 6, 2014, pp. 192-213.
- V. Modrak, D. Marton, Configuration complexity assessment of convergent supply chain systems, International Journal of General Systems, Volume 43, Issue 5, 2014.
- Omar E. Pol, Illustration of initial terms of A139582 (n>=1) and of A066186
Programs
-
Mathematica
Array[2 PartitionsP@# &, 50, 0] (* Robert G. Wilson v, Feb 11 2018 *)
-
PARI
a(n) = 2*numbpart(n); \\ Michel Marcus, Feb 12 2018
Formula
a(n) = 2*A000041(n).
Extensions
More terms from Omar E. Pol, Feb 11 2018
Comments