A066186
Sum of all parts of all partitions of n.
Original entry on oeis.org
0, 1, 4, 9, 20, 35, 66, 105, 176, 270, 420, 616, 924, 1313, 1890, 2640, 3696, 5049, 6930, 9310, 12540, 16632, 22044, 28865, 37800, 48950, 63336, 81270, 104104, 132385, 168120, 212102, 267168, 334719, 418540, 520905, 647172, 800569, 988570, 1216215, 1493520
Offset: 0
a(3)=9 because the partitions of 3 are: 3, 2+1 and 1+1+1; and (3) + (2+1) + (1+1+1) = 9.
a(4)=20 because A000041(4)=5 and 4*5=20.
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265, alternate copy. - From _N. J. A. Sloane_, Jan 02 2013
- F. G. Garvan, Higher-order spt functions, arXiv:1008.1207 [math.NT], 2010.
- T. J. Osler, A. Hassen and T. R. Chandrupatia, Surprising connections between partitions and divisors, The College Mathematics Journal, Vol. 38. No. 4, Sep. 2007, 278-287 (see p. 287).
- Omar E. Pol, Illustration of a(10), prism and tower, each polycube contains 420 cubes.
- Omar E. Pol, Illustration of initial terms of A066186 and of A139582 (n>=1)
Row sums of triangles
A138785,
A181187,
A245099,
A337209,
A339106,
A340423,
A340424,
A221529,
A302246,
A338156,
A340035,
A340056,
A340057,
A346741. -
Omar E. Pol, Aug 02 2021
-
a066186 = sum . concat . ps 1 where
ps _ 0 = [[]]
ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
-- Reinhard Zumkeller, Jul 13 2013
-
with(combinat): a:= n-> n*numbpart(n): seq(a(n), n=0..50); # Zerinvary Lajos, Apr 25 2007
-
PartitionsP[ Range[0, 60] ] * Range[0, 60]
-
a(n)=numbpart(n)*n \\ Charles R Greathouse IV, Mar 10 2012
-
from sympy import npartitions
def A066186(n): return n*npartitions(n) # Chai Wah Wu, Oct 22 2023
-
[n*Partitions(n).cardinality() for n in range(41)] # Peter Luschny, Jul 29 2014
A211978
Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n.
Original entry on oeis.org
0, 2, 6, 12, 24, 40, 70, 108, 172, 256, 384, 550, 798, 1112, 1560, 2136, 2926, 3930, 5288, 6996, 9260, 12104, 15798, 20412, 26348, 33702, 43044, 54588, 69090, 86906, 109126, 136270, 169854, 210732, 260924, 321752, 396028, 485624, 594402, 725174, 883092, 1072208
Offset: 0
Illustration of initial terms as a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
. _ _ _ _ _ _
. _ _ _ |
. _ _ _|_ |
. _ _ | |
. _ _ _ _ _ _ _|_ _|_ |
. _ _ _ | _ _ _ | |
. _ _ _ _ _ _ _|_ | _ _ _|_ | |
. _ _ | _ _ | | _ _ | | |
. _ _ _ _ _|_ | _ _|_ | | _ _|_ | | |
. _ _ _ _ | _ _ | | _ _ | | | _ _ | | | |
. _ _ | _ | | _ | | | _ | | | | _ | | | | |
. | | | | | | | | | | | | | | | | | | | | |
.
. 2 6 12 24 40 70
.
Also using the elements from the diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n) as shown below:
.
11...........................................................
. /\
. / \
. / \
7.................................. / \
. /\ / \
5.................... / \ /\/ \
. /\ / \ /\ / \
3.......... / \ / \ / \/ \
2..... /\ / \ /\/ \ / \
1.. /\ / \ /\/ \ / \ /\/ \
0 /\/ \/ \/ \/ \/ \
. 0,2, 6, 12, 24, 40, 70...
.
Cf.
A006128,
A135010,
A141285,
A186114,
A193870,
A187219,
A194446,
A194447,
A206437,
A211026,
A220517,
A225600,
A278355.
-
Q := sum(x^j/(1-x^j), j = 1 .. i): R := product(1-x^j, j = 1 .. i): g := sum(x^i*(1+i+Q)/R, i = 1 .. 100): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 41); # Emeric Deutsch, Oct 07 2016
-
Array[2 Sum[DivisorSigma[0, m] PartitionsP[# - m], {m, #}] &, 42, 0] (* Michael De Vlieger, Mar 20 2020 *)
A225600
Toothpick sequence related to integer partitions (see Comments lines for definition).
Original entry on oeis.org
0, 1, 2, 4, 6, 9, 12, 14, 15, 19, 24, 27, 28, 33, 40, 42, 43, 47, 49, 52, 53, 59, 70, 73, 74, 79, 81, 85, 86, 93, 108, 110, 111, 115, 117, 120, 121, 127, 131, 136, 137, 141, 142, 150, 172, 175, 176, 181, 183, 187, 188, 195, 199, 202, 203, 209, 211, 216, 217, 226, 256
Offset: 0
For n = 30 the structure has 108 toothpicks, so a(30) = 108.
. Diagram of regions
Partitions of 7 and partitions of 7
. _ _ _ _ _ _ _
7 15 _ _ _ _ |
4 + 3 _ _ _ _|_ |
5 + 2 _ _ _ | |
3 + 2 + 2 _ _ _|_ _|_ |
6 + 1 11 _ _ _ | |
3 + 3 + 1 _ _ _|_ | |
4 + 2 + 1 _ _ | | |
2 + 2 + 2 + 1 _ _|_ _|_ | |
5 + 1 + 1 7 _ _ _ | | |
3 + 2 + 1 + 1 _ _ _|_ | | |
4 + 1 + 1 + 1 5 _ _ | | | |
2 + 2 + 1 + 1 + 1 _ _|_ | | | |
3 + 1 + 1 + 1 + 1 3 _ _ | | | | |
2 + 1 + 1 + 1 + 1 + 1 2 _ | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1 1 | | | | | | |
.
. 1 2 3 4 5 6 7
.
Illustration of initial terms:
.
. _ _ _ _ _ _
. _ _ _ _ _ _ _ _ |
. _ _ _ _ | _ | _ | |
. | | | | | | | | |
.
. 1 2 4 6 9 12
.
.
. _ _ _ _ _ _ _ _
. _ _ _ _ _ _ _ _ |
. _ _ _ _ _|_ _ _|_ _ _|_ |
. _ _ | _ _ | _ _ | _ _ | |
. _ | | _ | | _ | | _ | | |
. | | | | | | | | | | | | |
.
. 14 15 19 24
.
.
. _ _ _ _ _ _ _ _ _ _
. _ _ _ _ _ _ _ _ _ _ _ _ |
. _ _ _ _ _ _ _|_ _ _ _|_ _ _ _|_ |
. _ _ | _ _ | _ _ | _ _ | |
. _ _|_ | _ _|_ | _ _|_ | _ _|_ | |
. _ _ | | _ _ | | _ _ | | _ _ | | |
. _ | | | _ | | | _ | | | _ | | | |
. | | | | | | | | | | | | | | | | |
.
. 27 28 33 40
.
Illustration of initial terms as vertices (or the number of steps from the origin) of a Dyck path:
.
7 33
. /\
5 19 / \
. /\ / \
3 9 / \ 27 / \
2 4 /\ 14 / \ /\/ \
1 1 /\ / \ /\/ \ / 28 \
. /\/ \/ \/ 15 \/ \
. 0 2 6 12 24 40
.
Cf.
A000041,
A006128,
A135010,
A138137,
A139250,
A139582,
A141285,
A186114,
A186412,
A187219,
A194446,
A194447,
A206437,
A207779,
A211978,
A220517,
A225610.
A221530
Triangle read by rows: T(n,k) = A000005(k)*A000041(n-k).
Original entry on oeis.org
1, 1, 2, 2, 2, 2, 3, 4, 2, 3, 5, 6, 4, 3, 2, 7, 10, 6, 6, 2, 4, 11, 14, 10, 9, 4, 4, 2, 15, 22, 14, 15, 6, 8, 2, 4, 22, 30, 22, 21, 10, 12, 4, 4, 3, 30, 44, 30, 33, 14, 20, 6, 8, 3, 4, 42, 60, 44, 45, 22, 28, 10, 12, 6, 4, 2, 56, 84, 60, 66, 30, 44, 14, 20, 9, 8, 2, 6
Offset: 1
For n = 6:
-------------------------
k A000005 T(6,k)
1 1 * 7 = 7
2 2 * 5 = 10
3 2 * 3 = 6
4 3 * 2 = 6
5 2 * 1 = 2
6 4 * 1 = 4
. A000041
-------------------------
So row 6 is [7, 10, 6, 6, 4, 2]. Note that the sum of row 6 is 7+10+6+6+2+4 = 35 equals A006128(6).
.
Triangle begins:
1;
1, 2;
2, 2, 2;
3, 4, 2, 3;
5, 6, 4, 3, 2;
7, 10, 6, 6, 2, 4;
11, 14, 10, 9, 4, 4, 2;
15, 22, 14, 15, 6, 8, 2, 4;
22, 30, 22, 21, 10, 12, 4, 4, 3;
30, 44, 30, 33, 14, 20, 6, 8, 3, 4;
42, 60, 44, 45, 22, 28, 10, 12, 6, 4, 2;
56, 84, 60, 66, 30, 44, 14, 20, 9, 8, 2, 6;
...
-
A221530row[n_]:=DivisorSigma[0,Range[n]]PartitionsP[n-Range[n]];Array[A221530row,10] (* Paolo Xausa, Sep 04 2023 *)
-
row(n) = vector(n, i, numdiv(i)*numbpart(n-i)); \\ Michel Marcus, Jul 18 2014
A225610
Total number of parts in all partitions of n plus the sum of largest parts in all partitions of n plus the number of partitions of n plus n.
Original entry on oeis.org
1, 4, 10, 18, 33, 52, 87, 130, 202, 295, 436, 617, 887, 1226, 1709, 2327, 3173, 4244, 5691, 7505, 9907, 12917, 16822, 21690, 27947, 35685, 45506, 57625, 72836, 91500, 114760, 143143, 178235, 220908, 273268, 336670, 414041, 507298, 620455, 756398, 920470
Offset: 0
For n = 7 the total number of parts in all partitions of 7 plus the sum of largest parts in all partitions of 7 plus the number of partitions of 7 plus 7 is equal to A006128(7) + A006128(7) + A000041(7) + 7 = 54 + 54 + 15 + 7 = 130. On the other hand the number of toothpicks in the diagram of regions of the set of partitions of 7 is equal to 130, so a(7) = 130.
. Diagram of regions
Partitions of 7 and partitions of 7
. _ _ _ _ _ _ _
7 15 |_ _ _ _ |
4 + 3 |_ _ _ _|_ |
5 + 2 |_ _ _ | |
3 + 2 + 2 |_ _ _|_ _|_ |
6 + 1 11 |_ _ _ | |
3 + 3 + 1 |_ _ _|_ | |
4 + 2 + 1 |_ _ | | |
2 + 2 + 2 + 1 |_ _|_ _|_ | |
5 + 1 + 1 7 |_ _ _ | | |
3 + 2 + 1 + 1 |_ _ _|_ | | |
4 + 1 + 1 + 1 5 |_ _ | | | |
2 + 2 + 1 + 1 + 1 |_ _|_ | | | |
3 + 1 + 1 + 1 + 1 3 |_ _ | | | | |
2 + 1 + 1 + 1 + 1 + 1 2 |_ | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1 1 |_|_|_|_|_|_|_|
.
. 1 2 3 4 5 6 7
.
Illustration of initial terms as the number of toothpicks in a diagram of regions of the set of partitions of n, for n = 1..6:
. _ _ _ _ _ _
. |_ _ _ |
. |_ _ _|_ |
. |_ _ | |
. _ _ _ _ _ |_ _|_ _|_ |
. |_ _ _ | |_ _ _ | |
. _ _ _ _ |_ _ _|_ | |_ _ _|_ | |
. |_ _ | |_ _ | | |_ _ | | |
. _ _ _ |_ _|_ | |_ _|_ | | |_ _|_ | | |
. _ _ |_ _ | |_ _ | | |_ _ | | | |_ _ | | | |
. _ |_ | |_ | | |_ | | | |_ | | | | |_ | | | | |
.|_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 4 10 18 33 52 87
Cf.
A000041,
A000094,
A006128,
A066186,
A093694,
A133041,
A135010,
A138137,
A139250,
A139582,
A141285,
A182377,
A186114,
A186412,
A187219,
A194446,
A194447,
A206437,
A207779,
A211978,
A220517,
A225596,
A225600.
A325189
Regular triangle read by rows where T(n,k) is the number of integer partitions of n with maximum origin-to-boundary graph-distance equal to k.
Original entry on oeis.org
1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 3, 2, 0, 0, 0, 3, 2, 2, 0, 0, 0, 1, 6, 2, 2, 0, 0, 0, 0, 7, 4, 2, 2, 0, 0, 0, 0, 6, 8, 4, 2, 2, 0, 0, 0, 0, 4, 12, 6, 4, 2, 2, 0, 0, 0, 0, 1, 15, 12, 6, 4, 2, 2, 0, 0, 0, 0, 0, 17, 15, 10, 6, 4, 2, 2
Offset: 0
Triangle begins:
1
0 1
0 0 2
0 0 1 2
0 0 0 3 2
0 0 0 3 2 2
0 0 0 1 6 2 2
0 0 0 0 7 4 2 2
0 0 0 0 6 8 4 2 2
0 0 0 0 4 12 6 4 2 2
0 0 0 0 1 15 12 6 4 2 2
0 0 0 0 0 17 15 10 6 4 2 2
0 0 0 0 0 14 23 16 10 6 4 2 2
0 0 0 0 0 10 30 23 14 10 6 4 2 2
0 0 0 0 0 5 39 29 24 14 10 6 4 2 2
0 0 0 0 0 1 42 42 31 22 14 10 6 4 2 2
Row 9 counts the following partitions:
(432) (54) (63) (72) (81) (9)
(3321) (333) (621) (711) (21111111) (111111111)
(4221) (441) (6111) (2211111)
(4311) (522) (222111) (3111111)
(531) (321111)
(3222) (411111)
(5211)
(22221)
(32211)
(33111)
(42111)
(51111)
- Andrew Howroyd, Table of n, a(n) for n = 0..1325 (rows 0..50)
- Bridget Eileen Tenner, Reduced word manipulation: patterns and enumeration, J. Algebr. Comb. 46, No. 1, 189-217 (2017), table 1.
- Tewodros Amdeberhan, George E. Andrews, and Cristina Ballantine, Hook length and symplectic content in partitions, arXiv:2205.07322 [math.CO], 2022.
- Eric Weisstein's World of Mathematics, Graph Distance
Cf.
A065770,
A096771,
A115720,
A115994,
A139582,
A325169,
A325183,
A325188,
A325195,
A325200,
A366157.
-
otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
Table[Length[Select[IntegerPartitions[n],otbmax[#]==k&]],{n,0,15},{k,0,n}]
-
row(n)={my(r=vector(n+1)); forpart(p=n, my(w=0); for(i=1, #p, w=max(w,#p-i+p[i])); r[w+1]++); r} \\ Andrew Howroyd, Jan 12 2024
A221531
Triangle read by rows: T(n,k) = A000005(n-k+1)*A000041(k-1), n>=1, k>=1.
Original entry on oeis.org
1, 2, 1, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 6, 5, 4, 2, 6, 6, 10, 7, 2, 4, 4, 9, 10, 14, 11, 4, 2, 8, 6, 15, 14, 22, 15, 3, 4, 4, 12, 10, 21, 22, 30, 22, 4, 3, 8, 6, 20, 14, 33, 30, 44, 30, 2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42, 6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56
Offset: 1
For n = 6:
-------------------------
k A000041 T(6,k)
1 1 * 4 = 4
2 1 * 2 = 2
3 2 * 3 = 6
4 3 * 2 = 6
5 5 * 2 = 10
6 7 * 1 = 7
. A000005
-------------------------
So row 6 is [4, 2, 6, 6, 10, 7]. Note that the sum of row 6 is 4+2+6+6+10+7 = 35 equals A006128(6).
.
Triangle begins:
1;
2, 1;
2, 2, 2;
3, 2, 4, 3;
2, 3, 4, 6, 5;
4, 2, 6, 6, 10, 7;
2, 4, 4, 9, 10, 14, 11;
4, 2, 8, 6, 15, 14, 22, 15;
3, 4, 4, 12, 10, 21, 22, 30, 22;
4, 3, 8, 6, 20, 14, 33, 30, 44, 30;
2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42;
6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56;
...
A220909
The second crank moment function M_2(n).
Original entry on oeis.org
0, 2, 8, 18, 40, 70, 132, 210, 352, 540, 840, 1232, 1848, 2626, 3780, 5280, 7392, 10098, 13860, 18620, 25080, 33264, 44088, 57730, 75600, 97900, 126672, 162540, 208208, 264770, 336240, 424204, 534336, 669438, 837080, 1041810, 1294344, 1601138, 1977140, 2432430, 2987040, 3655806
Offset: 0
G.f. = 2*x + 8*x^2 + 18*x^3 + 40*x^4 + 70*x^5 + 132*x^6 + 210*x^7 + ...
For n=1, M_2(1) = Sum_{m=-1..1} m^2 * M(m,2) = (-1)^2*1 + 0^2*(-1) + 1^2*1 = 2. For n=2, the partition [2] has crank 2 and partition [1,1] has crank -2, hence M_2(2) = 2^2 + (-2)^2 = 8. - _Michael Somos_, Nov 10 2013
- G. C. Greubel, Table of n, a(n) for n = 0..5000
- F. G. Garvan, Higher-order spt functions, arXiv:1008.1207 [math.NT], 2010.
- F. G. Garvan, Higher-order spt functions, Adv. Math. 228 (2011), no. 1, 241-265.
- Wikipedia, Crank of a partition
-
a[ n_] := 2 n PartitionsP @ n (* Michael Somos, Nov 10 2013 *)
-
{a(n) = if( n<0, 0, 2 * n * polcoeff( 1 / eta(x + x * O(x^n)), n))} /* Michael Somos, Nov 10 2013 */
A278355
a(n) = sum of the perimeters of the Ferrers boards of the partitions of n. Also, sum of the perimeters of the diagrams of the regions of the set of partitions of n.
Original entry on oeis.org
0, 4, 12, 24, 48, 80, 140, 216, 344, 512, 768, 1100, 1596, 2224, 3120, 4272, 5852, 7860, 10576, 13992, 18520, 24208, 31596, 40824, 52696, 67404, 86088, 109176, 138180, 173812, 218252, 272540, 339708, 421464, 521848, 643504, 792056, 971248, 1188804, 1450348, 1766184, 2144416, 2599164, 3141748, 3791248, 4563780
Offset: 0
For n = 5 consider the partitions of 5 in colexicographic order (as shown in the 5th row of the triangle A211992) and its associated diagram of regions as shown below:
. Regions Minimalist
. Partitions of 5 diagram version
. _ _ _ _ _
. 1, 1, 1, 1, 1 |_| | | | | _| | | | |
. 2, 1, 1, 1 |_ _| | | | _ _| | | |
. 3, 1, 1 |_ _ _| | | _ _ _| | |
. 2, 2, 1 |_ _| | | _ _| | |
. 4, 1 |_ _ _ _| | _ _ _ _| |
. 3, 2 |_ _ _| | _ _| |
. 5 |_ _ _ _ _| _ _ _ _ _|
.
Then consider the following table which contains the Ferrers boards of the partitions of 5 and the diagram of every region of the set of partitions of 5:
-------------------------------------------------------------------------
| Partitions | | | Regions | | |
| of 5 | Ferrers | Peri- | of 5 | Region | Peri- |
|(See A211992)| board | meter |(see A220482)| diagram | meter |
-------------------------------------------------------------------------
| _ | _ |
| 1 |_| | 1 |_| 4 |
| 1 |_| | _ |
| 1 |_| | 1 _|_| |
| 1 |_| | 2 |_|_| 8 |
| 1 |_| 12 | _ |
| _ _ | 1 |_| |
| 2 |_|_| | 1 _ _|_| |
| 1 |_| | 3 |_|_|_| 12 |
| 1 |_| | _ _ |
| 1 |_| 12 | 2 |_|_| 6 |
| _ _ _ | _ |
| 3 |_|_|_| | 1 |_| |
| 1 |_| | 1 |_| |
| 1 |_| 12 | 1 _|_| |
| _ _ | 2 _ _|_|_| |
| 2 |_|_| | 4 |_|_|_|_| 18 |
| 2 |_|_| | _ _ _ |
| 1 |_| 10 | 3 |_|_|_| 8 |
| _ _ _ _ | _ |
| 4 |_|_|_|_| | 1 |_| |
| 1 |_| 12 | 1 |_| |
| _ _ _ | 1 |_| |
| 3 |_|_|_| | 1 |_| |
| 2 |_|_| 10 | 1 _|_| |
| _ _ _ _ _ | 2 _ _ _|_|_| |
| 6 |_|_|_|_|_| 12 | 5 |_|_|_|_|_| 24 |
| | |
-------------------------------------------------------------------------
| Sum of perimeters: 80 <-- equals --> 80 |
-------------------------------------------------------------------------
The sum of the perimeters of the Ferrers boards is 12 + 12 + 12 + 10 + 12 + 10 + 12 = 80, so a(5) = 80.
On the other hand, the sum of the perimeters of the diagrams of regions is 4 + 8 + 12 + 6 + 18 + 8 + 24 = 80, equaling the sum of the perimeters of the Ferrers boards.
.
Illustration of first six polygons of an infinite diagram constructed with the boundary segments of the minimalist diagram of regions and its mirror (note that the diagram looks like reflections on a mountain lake):
11............................................................
. /\
. / \
. / \
7................................... / \
. /\ / \
5..................... / \ /\/ \
. /\ / \ /\ / \
3........... / \ / \ / \/ \
2....... /\ / \ /\/ \ / \
1... /\ / \ /\/ \ / \ /\/ \
0 /\/ \/ \/ \/ \/ \
. \/\ /\ /\ /\ /\ /
. \/ \ / \/\ / \ / \/\ /
. \/ \ / \/\ / \ /
. \ / \ / \ /\ /
. \/ \ / \/ \ /
. \ / \/\ /
. \/ \ /
. \ /
. \ /
. \ /
. \/
n:
. 0 1 2 3 4 5 6
Perimeter of the n-th polygon:
. 0 4 8 12 24 32 60
a(n) is the sum of the perimeters of the first n polygons:
. 0 4 12 24 48 80 140
.
For n = 5, the sum of the perimeters of the first five polygons is 4 + 8 + 12 + 24 + 32 = 80, so a(5) = 80.
For n = 6, the sum of the perimeters of the first six polygons is 4 + 8 + 12 + 24 + 32 + 60 = 140, so a(6) = 140.
For another version of the above diagram see A228109.
Cf.
A000041,
A006128,
A135010,
A138137,
A139582,
A141285,
A194446,
A211992,
A220482,
A225600,
A211978,
A233968,
A244968.
A299474
a(n) = 4*p(n), where p(n) is the number of partitions of n.
Original entry on oeis.org
4, 4, 8, 12, 20, 28, 44, 60, 88, 120, 168, 224, 308, 404, 540, 704, 924, 1188, 1540, 1960, 2508, 3168, 4008, 5020, 6300, 7832, 9744, 12040, 14872, 18260, 22416, 27368, 33396, 40572, 49240, 59532, 71908, 86548, 104060, 124740, 149352, 178332, 212696, 253044, 300700, 356536, 422232, 499016, 589092, 694100, 816904
Offset: 0
Construction of a modular table of partitions in which a(n) is the number of edges of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........: 1 2 3 4 5 6 (stage)
a(n)......: 4 8 12 20 28 44 (edges)
A299475(n): 4 7 10 16 22 34 (vertices)
A000041(n): 1 2 3 5 7 11 (regions)
--------------------------------------------------------------------------------
r p(n)
--------------------------------------------------------------------------------
. _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
1 .... 1 ....|_| |_| | |_| | | |_| | | | |_| | | | | |_| | | | | |
2 .... 2 .........|_ _| |_ _| | |_ _| | | |_ _| | | | |_ _| | | | |
3 .... 3 ................|_ _ _| |_ _ _| | |_ _ _| | | |_ _ _| | | |
4 |_ _| | |_ _| | | |_ _| | | |
5 .... 5 .........................|_ _ _ _| |_ _ _ _| | |_ _ _ _| | |
6 |_ _ _| | |_ _ _| | |
7 .... 7 ....................................|_ _ _ _ _| |_ _ _ _ _| |
8 |_ _| | |
9 |_ _ _ _| |
10 |_ _ _| |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
Cf.
A135010,
A141285,
A182181,
A186114,
A193870,
A194446,
A194447,
A206437,
A207779,
A220482,
A220517,
A273140,
A278355,
A278602,
A299475.
-
List([0..50],n->4*NrPartitions(n)); # Muniru A Asiru, Jul 10 2018
-
with(combinat): seq(4*numbpart(n),n=0..50); # Muniru A Asiru, Jul 10 2018
-
4*PartitionsP[Range[0,50]] (* Harvey P. Dale, Dec 05 2023 *)
-
a(n) = 4*numbpart(n); \\ Michel Marcus, Jul 15 2018
-
from sympy.ntheory import npartitions
def a(n): return 4*npartitions(n)
print([a(n) for n in range(51)]) # Michael S. Branicky, Apr 04 2021
Showing 1-10 of 22 results.
Comments