cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A066186 Sum of all parts of all partitions of n.

Original entry on oeis.org

0, 1, 4, 9, 20, 35, 66, 105, 176, 270, 420, 616, 924, 1313, 1890, 2640, 3696, 5049, 6930, 9310, 12540, 16632, 22044, 28865, 37800, 48950, 63336, 81270, 104104, 132385, 168120, 212102, 267168, 334719, 418540, 520905, 647172, 800569, 988570, 1216215, 1493520
Offset: 0

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

Sum of the zeroth moments of all partitions of n.
Also the number of one-element transitions from the integer partitions of n to the partitions of n-1 for labeled parts with the assumption that any part z is composed of labeled elements of amount 1, i.e., z = 1_1 + 1_2 + ... + 1_z. Then one can take from z a single element in z different ways. E.g., for n=3 to n=2 we have A066186(3) = 9 and [111] --> [11], [111] --> [11], [111] --> [11], [12] --> [111], [12] --> [111], [12] --> [2], [3] --> 2, [3] --> 2, [3] --> 2. For the unlabeled case, one can take a single element from z in only one way. Then the number of one-element transitions from the integer partitions of n to the partitions of n-1 is given by A000070. E.g., A000070(3) = 4 and for the transition from n=3 to n=2 one has [111] --> [11], [12] --> [11], [12] --> [2], [3] --> [2]. - Thomas Wieder, May 20 2004
Also sum of all parts of all regions of n (Cf. A206437). - Omar E. Pol, Jan 13 2013
From Omar E. Pol, Jan 19 2021: (Start)
Apart from initial zero this is also as follows:
Convolution of A000203 and A000041.
Convolution of A024916 and A002865.
For n >= 1, a(n) is also the number of cells in a symmetric polycube in which the terraces are the symmetric representation of sigma(k), for k = n..1, (cf. A237593) starting from the base and located at the levels A000041(0)..A000041(n-1) respectively. The polycube looks like a symmetric tower (cf. A221529). A dissection is a three-dimensional spiral whose top view is described in A239660. The growth of the volume of the polycube represents each convolution mentioned above. (End)
From Omar E. Pol, Feb 04 2021: (Start)
a(n) is also the sum of all divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. The mentioned divisors are also all parts of all partitions of n.
Apart from initial zero this is also the convolution of A340793 and A000070. (End)

Examples

			a(3)=9 because the partitions of 3 are: 3, 2+1 and 1+1+1; and (3) + (2+1) + (1+1+1) = 9.
a(4)=20 because A000041(4)=5 and 4*5=20.
		

Crossrefs

Cf. A000041, A093694, A000070, A132825, A001787 (same for ordered partitions), A277029, A000203, A221529, A237593, A239660.
First differences give A138879. - Omar E. Pol, Aug 16 2013

Programs

  • Haskell
    a066186 = sum . concat . ps 1 where
       ps _ 0 = [[]]
       ps i j = [t:ts | t <- [i..j], ts <- ps t (j - t)]
    -- Reinhard Zumkeller, Jul 13 2013
    
  • Maple
    with(combinat): a:= n-> n*numbpart(n): seq(a(n), n=0..50); # Zerinvary Lajos, Apr 25 2007
  • Mathematica
    PartitionsP[ Range[0, 60] ] * Range[0, 60]
  • PARI
    a(n)=numbpart(n)*n \\ Charles R Greathouse IV, Mar 10 2012
    
  • Python
    from sympy import npartitions
    def A066186(n): return n*npartitions(n) # Chai Wah Wu, Oct 22 2023
  • Sage
    [n*Partitions(n).cardinality() for n in range(41)] # Peter Luschny, Jul 29 2014
    

Formula

a(n) = n * A000041(n). - Omar E. Pol, Oct 10 2011
G.f.: x * (d/dx) Product_{k>=1} 1/(1-x^k), i.e., derivative of g.f. for A000041. - Jon Perry, Mar 17 2004 (adjusted to match the offset by Geoffrey Critzer, Nov 29 2014)
Equals A132825 * [1, 2, 3, ...]. - Gary W. Adamson, Sep 02 2007
a(n) = A066967(n) + A066966(n). - Omar E. Pol, Mar 10 2012
a(n) = A207381(n) + A207382(n). - Omar E. Pol, Mar 13 2012
a(n) = A006128(n) + A196087(n). - Omar E. Pol, Apr 22 2012
a(n) = A220909(n)/2. - Omar E. Pol, Jan 13 2013
a(n) = Sum_{k=1..n} A000203(k)*A000041(n-k), n >= 1. - Omar E. Pol, Jan 20 2013
a(n) = Sum_{k=1..n} k*A036043(n,n-k+1). - L. Edson Jeffery, Aug 03 2013
a(n) = Sum_{k=1..n} A024916(k)*A002865(n-k), n >= 1. - Omar E. Pol, Jul 13 2014
a(n) ~ exp(Pi*sqrt(2*n/3))/(4*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Oct 24 2016
a(n) = Sum_{k=1..n} A340793(k)*A000070(n-k), n >= 1. - Omar E. Pol, Feb 04 2021

Extensions

a(0) added by Franklin T. Adams-Watters, Jul 28 2014

A211978 Total number of parts in all partitions of n plus the sum of largest parts of all partitions of n.

Original entry on oeis.org

0, 2, 6, 12, 24, 40, 70, 108, 172, 256, 384, 550, 798, 1112, 1560, 2136, 2926, 3930, 5288, 6996, 9260, 12104, 15798, 20412, 26348, 33702, 43044, 54588, 69090, 86906, 109126, 136270, 169854, 210732, 260924, 321752, 396028, 485624, 594402, 725174, 883092, 1072208
Offset: 0

Views

Author

Omar E. Pol, Jan 03 2013

Keywords

Comments

Also twice A006128, because the total number of parts in all partitions of n equals the sum of largest parts of all partitions of n. For a proof without words see the illustration of initial terms. Note that the sum of the lengths of all horizontal segments equals the sum of largest parts of all partitions of n. On the other hand, the sum of the lengths of all vertical segments equals the total number of parts of all partition of n. Therefore the sum of lengths of all horizontal segments equals the sum of lengths of all vertical segments.
a(n) is also the sum of the semiperimeters of the Ferrers boards of the partitions of n. Example: a(2)=6; indeed, the Ferrers boards of the partitions [2] and [1,1] of 2 are 2x1 rectangles; the sum of their semiperimeters is 3 + 3 = 6. - Emeric Deutsch, Oct 07 2016
a(n) is also the sum of the semiperimeters of the regions of the set of partitions of n. See the first illustration in the Example section. For more information see A278355. - Omar E. Pol, Nov 23 2016

Examples

			Illustration of initial terms as a minimalist diagram of regions of the set of partitions of n, for n = 1..6:
.                                         _ _ _ _ _ _
.                                         _ _ _      |
.                                         _ _ _|_    |
.                                         _ _    |   |
.                             _ _ _ _ _   _ _|_ _|_  |
.                             _ _ _    |  _ _ _    | |
.                   _ _ _ _   _ _ _|_  |  _ _ _|_  | |
.                   _ _    |  _ _    | |  _ _    | | |
.           _ _ _   _ _|_  |  _ _|_  | |  _ _|_  | | |
.     _ _   _ _  |  _ _  | |  _ _  | | |  _ _  | | | |
. _   _  |  _  | |  _  | | |  _  | | | |  _  | | | | |
.  |   | |   | | |   | | | |   | | | | |   | | | | | |
.
. 2    6     12        24         40          70
.
Also using the elements from the diagram we can draw an infinite Dyck path in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. Note that the n-th largest peak between two valleys at height 0 is also the partition number A000041(n) as shown below:
.
11...........................................................
.                                                           /\
.                                                          /  \
.                                                         /    \
7..................................                      /      \
.                                 /\                    /        \
5....................            /  \                /\/          \
.                   /\          /    \          /\  /              \
3..........        /  \        /      \        /  \/                \
2.....    /\      /    \    /\/        \      /                      \
1..  /\  /  \  /\/      \  /            \  /\/                        \
0 /\/  \/    \/          \/              \/                            \
. 0,2,  6,   12,         24,             40,                          70...
.
		

Crossrefs

Programs

  • Maple
    Q := sum(x^j/(1-x^j), j = 1 .. i): R := product(1-x^j, j = 1 .. i): g := sum(x^i*(1+i+Q)/R, i = 1 .. 100): gser := series(g, x = 0, 50): seq(coeff(gser, x, n), n = 0 .. 41); # Emeric Deutsch, Oct 07 2016
  • Mathematica
    Array[2 Sum[DivisorSigma[0, m] PartitionsP[# - m], {m, #}] &, 42, 0] (* Michael De Vlieger, Mar 20 2020 *)

Formula

a(n) = 2*A006128(n).
a(n) = A225600(2*A000041(n)) = A225600(A139582(n)), n >= 1.
a(n) = (Sum_{m=1..p(n)} A194446(m)) + (Sum_{m=1..p(n)} A141285(m)) = 2*Sum_{m=1..p(n)} A194446(m) = 2*Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1.
The trivariate g.f. G(t,s,x) of the partitions of a nonnegative integer relative to weight (marked by x), number of parts (marked by t), and largest part (marked by s) is G(t,s,x) = Sum_{i>=1} t*s^i*x^i/product_{j=1..i} (1-tx^j). Setting s = t, we obtain the bivariate g.f. of the partitions relative to weight (marked by x) and semiperimeter of the Ferrers board (marked by t). The g.f. of a(n) is g(x) = Sum_{i>=1} ((x^i*(1 + i + Q(x))/R(x)), where Q(x) = sum_{j=1..i} (x^j/(1 - x^j)) and R(x) = product_{j=1..i}(1-x^j). g(x) has been obtained by setting t = 1 in dG(t,t,x))/dt. - Emeric Deutsch, Oct 07 2016

A225600 Toothpick sequence related to integer partitions (see Comments lines for definition).

Original entry on oeis.org

0, 1, 2, 4, 6, 9, 12, 14, 15, 19, 24, 27, 28, 33, 40, 42, 43, 47, 49, 52, 53, 59, 70, 73, 74, 79, 81, 85, 86, 93, 108, 110, 111, 115, 117, 120, 121, 127, 131, 136, 137, 141, 142, 150, 172, 175, 176, 181, 183, 187, 188, 195, 199, 202, 203, 209, 211, 216, 217, 226, 256
Offset: 0

Views

Author

Omar E. Pol, Jul 28 2013

Keywords

Comments

This infinite toothpick structure is a minimalist diagram of regions of the set of partitions of all positive integers. For the definition of "region" see A206437. The sequence shows the growth of the diagram as a cellular automaton in which the "input" is A141285 and the "output” is A194446.
To define the sequence we use the following rules:
We start in the first quadrant of the square grid with no toothpicks.
If n is odd we place A141285((n+1)/2) toothpicks of length 1 connected by their endpoints in horizontal direction starting from the grid point (0, (n+1)/2).
If n is even we place toothpicks of length 1 connected by their endpoints in vertical direction starting from the exposed toothpick endpoint downward up to touch the structure or up to touch the x-axis. In this case the number of toothpicks added in vertical direction is equal to A194446(n/2).
The sequence gives the number of toothpicks after n stages. A220517 (the first differences) gives the number of toothpicks added at the n-th stage.
Also the toothpick structure (HV/HHVV/HHHVVV/HHV/HHHHVVVVV...) can be transformed in a Dyck path (UDUUDDUUUDDDUUDUUUUDDDDD...) in which the n-th odd-indexed segment has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps, so the sequence can be represented by the vertices (or the number of steps from the origin) of the Dyck path. Note that the height of the n-th largest peak between two valleys at height 0 is also the partition number A000041(n). See Example section. See also A211978, A220517, A225610.

Examples

			For n = 30 the structure has 108 toothpicks, so a(30) = 108.
.                               Diagram of regions
Partitions of 7                 and partitions of 7
.                                   _ _ _ _ _ _ _
7                               15  _ _ _ _      |
4 + 3                               _ _ _ _|_    |
5 + 2                               _ _ _    |   |
3 + 2 + 2                           _ _ _|_ _|_  |
6 + 1                           11  _ _ _      | |
3 + 3 + 1                           _ _ _|_    | |
4 + 2 + 1                           _ _    |   | |
2 + 2 + 2 + 1                       _ _|_ _|_  | |
5 + 1 + 1                        7  _ _ _    | | |
3 + 2 + 1 + 1                       _ _ _|_  | | |
4 + 1 + 1 + 1                    5  _ _    | | | |
2 + 2 + 1 + 1 + 1                   _ _|_  | | | |
3 + 1 + 1 + 1 + 1                3  _ _  | | | | |
2 + 1 + 1 + 1 + 1 + 1            2  _  | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1        1   | | | | | | |
.
.                                   1 2 3 4 5 6 7
.
Illustration of initial terms:
.
.                              _ _ _    _ _ _
.                _ _   _ _     _ _      _ _  |
.      _    _    _     _  |    _  |     _  | |
.            |    |     | |     | |      | | |
.
.      1    2     4     6       9        12
.
.
.                          _ _ _ _     _ _ _ _
.      _ _       _ _       _ _         _ _    |
.      _ _ _     _ _|_     _ _|_       _ _|_  |
.      _ _  |    _ _  |    _ _  |      _ _  | |
.      _  | |    _  | |    _  | |      _  | | |
.       | | |     | | |     | | |       | | | |
.
.        14        15         19          24
.
.
.                          _ _ _ _ _    _ _ _ _ _
.    _ _ _      _ _ _      _ _ _        _ _ _    |
.    _ _ _ _    _ _ _|_    _ _ _|_      _ _ _|_  |
.    _ _    |   _ _    |   _ _    |     _ _    | |
.    _ _|_  |   _ _|_  |   _ _|_  |     _ _|_  | |
.    _ _  | |   _ _  | |   _ _  | |     _ _  | | |
.    _  | | |   _  | | |   _  | | |     _  | | | |
.     | | | |    | | | |    | | | |      | | | | |
.
.       27         28         33            40
.
Illustration of initial terms as vertices (or the number of steps from the origin) of a Dyck path:
.
7                                    33
.                                    /\
5                      19           /  \
.                      /\          /    \
3            9        /  \     27 /      \
2       4    /\   14 /    \    /\/        \
1    1  /\  /  \  /\/      \  / 28         \
.    /\/  \/    \/ 15       \/              \
.   0  2   6    12          24              40
.
		

Crossrefs

Formula

a(A139582(n)) = a(2*A000041(n)) = 2*A006128(n) = A211978(n), n >= 1.

A221530 Triangle read by rows: T(n,k) = A000005(k)*A000041(n-k).

Original entry on oeis.org

1, 1, 2, 2, 2, 2, 3, 4, 2, 3, 5, 6, 4, 3, 2, 7, 10, 6, 6, 2, 4, 11, 14, 10, 9, 4, 4, 2, 15, 22, 14, 15, 6, 8, 2, 4, 22, 30, 22, 21, 10, 12, 4, 4, 3, 30, 44, 30, 33, 14, 20, 6, 8, 3, 4, 42, 60, 44, 45, 22, 28, 10, 12, 6, 4, 2, 56, 84, 60, 66, 30, 44, 14, 20, 9, 8, 2, 6
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2013

Keywords

Comments

T(n,k) is the number of partitions of n that contain k as a part multiplied by the number of divisors of k.
It appears that T(n,k) is also the total number of appearances of k in the last k sections of the set of partitions of n multiplied by the number of divisors of k.
T(n,k) is also the number of partitions of k into equal parts multiplied by the number of ones in the j-th section of the set of partitions of n, where j = (n - k + 1).
For another version see A245095. - Omar E. Pol, Jul 15 2014

Examples

			For n = 6:
  -------------------------
  k   A000005        T(6,k)
  1      1  *  7   =    7
  2      2  *  5   =   10
  3      2  *  3   =    6
  4      3  *  2   =    6
  5      2  *  1   =    2
  6      4  *  1   =    4
  .         A000041
  -------------------------
So row 6 is [7, 10, 6, 6, 4, 2]. Note that the sum of row 6 is 7+10+6+6+2+4 = 35 equals A006128(6).
.
Triangle begins:
  1;
  1,   2;
  2,   2,  2;
  3,   4,  2,  3;
  5,   6,  4,  3,  2;
  7,  10,  6,  6,  2,  4;
  11, 14, 10,  9,  4,  4,  2;
  15, 22, 14, 15,  6,  8,  2,  4;
  22, 30, 22, 21, 10, 12,  4,  4,  3;
  30, 44, 30, 33, 14, 20,  6,  8,  3,  4;
  42, 60, 44, 45, 22, 28, 10, 12,  6,  4,  2;
  56, 84, 60, 66, 30, 44, 14, 20,  9,  8,  2,  6;
  ...
		

Crossrefs

Similar to A221529.
Columns 1-2: A000041, A139582. Leading diagonals 1-3: A000005, A000005, A062011. Row sums give A006128.

Programs

  • Mathematica
    A221530row[n_]:=DivisorSigma[0,Range[n]]PartitionsP[n-Range[n]];Array[A221530row,10] (* Paolo Xausa, Sep 04 2023 *)
  • PARI
    row(n) = vector(n, i, numdiv(i)*numbpart(n-i)); \\ Michel Marcus, Jul 18 2014

Formula

T(n,k) = d(k)*p(n-k) = A000005(k)*A027293(n,k).

A225610 Total number of parts in all partitions of n plus the sum of largest parts in all partitions of n plus the number of partitions of n plus n.

Original entry on oeis.org

1, 4, 10, 18, 33, 52, 87, 130, 202, 295, 436, 617, 887, 1226, 1709, 2327, 3173, 4244, 5691, 7505, 9907, 12917, 16822, 21690, 27947, 35685, 45506, 57625, 72836, 91500, 114760, 143143, 178235, 220908, 273268, 336670, 414041, 507298, 620455, 756398, 920470
Offset: 0

Views

Author

Omar E. Pol, Jul 29 2013

Keywords

Comments

a(n) is also the total number of toothpicks in a toothpick structure which represents a diagram of regions of the set of partitions of n, n >= 1. The number of horizontal toothpicks is A225596(n). The number of vertical toothpicks is A093694(n). The difference between vertical toothpicks and horizontal toothpicks is A000041(n) - n = A000094(n+1). The total area (or total number of cells) of the diagram is A066186(n). The number of parts in the k-th region is A194446(k). The area (or number of cells) of the k-th region is A186412(k). For the definition of "region" see A206437. For a minimalist version of the diagram (which can be transformed into a Dyck path) see A211978. See also A225600.

Examples

			For n = 7 the total number of parts in all partitions of 7 plus the sum of largest parts in all partitions of 7 plus the number of partitions of 7 plus 7 is equal to A006128(7) + A006128(7) + A000041(7) + 7 = 54 + 54 + 15 + 7 = 130. On the other hand the number of toothpicks in the diagram of regions of the set of partitions of 7 is equal to 130, so a(7) = 130.
.                               Diagram of regions
Partitions of 7                 and partitions of 7
.                                   _ _ _ _ _ _ _
7                               15 |_ _ _ _      |
4 + 3                              |_ _ _ _|_    |
5 + 2                              |_ _ _    |   |
3 + 2 + 2                          |_ _ _|_ _|_  |
6 + 1                           11 |_ _ _      | |
3 + 3 + 1                          |_ _ _|_    | |
4 + 2 + 1                          |_ _    |   | |
2 + 2 + 2 + 1                      |_ _|_ _|_  | |
5 + 1 + 1                        7 |_ _ _    | | |
3 + 2 + 1 + 1                      |_ _ _|_  | | |
4 + 1 + 1 + 1                    5 |_ _    | | | |
2 + 2 + 1 + 1 + 1                  |_ _|_  | | | |
3 + 1 + 1 + 1 + 1                3 |_ _  | | | | |
2 + 1 + 1 + 1 + 1 + 1            2 |_  | | | | | |
1 + 1 + 1 + 1 + 1 + 1 + 1        1 |_|_|_|_|_|_|_|
.
.                                   1 2 3 4 5 6 7
.
Illustration of initial terms as the number of toothpicks in a diagram of regions of the set of partitions of n, for n = 1..6:
.                                         _ _ _ _ _ _
.                                        |_ _ _      |
.                                        |_ _ _|_    |
.                                        |_ _    |   |
.                             _ _ _ _ _  |_ _|_ _|_  |
.                            |_ _ _    | |_ _ _    | |
.                   _ _ _ _  |_ _ _|_  | |_ _ _|_  | |
.                  |_ _    | |_ _    | | |_ _    | | |
.           _ _ _  |_ _|_  | |_ _|_  | | |_ _|_  | | |
.     _ _  |_ _  | |_ _  | | |_ _  | | | |_ _  | | | |
. _  |_  | |_  | | |_  | | | |_  | | | | |_  | | | | |
.|_| |_|_| |_|_|_| |_|_|_|_| |_|_|_|_|_| |_|_|_|_|_|_|
.
. 4    10     18       33         52          87
		

Crossrefs

Formula

a(n) = 2*A006128(n) + A000041(n) + n = A211978(n) + A133041(n) = A093694(n) + A006128(n) + n = A093694(n) + A225596(n).

A325189 Regular triangle read by rows where T(n,k) is the number of integer partitions of n with maximum origin-to-boundary graph-distance equal to k.

Original entry on oeis.org

1, 0, 1, 0, 0, 2, 0, 0, 1, 2, 0, 0, 0, 3, 2, 0, 0, 0, 3, 2, 2, 0, 0, 0, 1, 6, 2, 2, 0, 0, 0, 0, 7, 4, 2, 2, 0, 0, 0, 0, 6, 8, 4, 2, 2, 0, 0, 0, 0, 4, 12, 6, 4, 2, 2, 0, 0, 0, 0, 1, 15, 12, 6, 4, 2, 2, 0, 0, 0, 0, 0, 17, 15, 10, 6, 4, 2, 2
Offset: 0

Views

Author

Gus Wiseman, Apr 11 2019

Keywords

Comments

The maximum origin-to-boundary graph-distance of an integer partition is one plus the maximum number of unit steps East or South in the Young diagram that can be followed, starting from the upper-left square, to reach a boundary square in the lower-right quadrant. It is also the side-length of the minimum triangular partition containing the diagram.

Examples

			Triangle begins:
  1
  0  1
  0  0  2
  0  0  1  2
  0  0  0  3  2
  0  0  0  3  2  2
  0  0  0  1  6  2  2
  0  0  0  0  7  4  2  2
  0  0  0  0  6  8  4  2  2
  0  0  0  0  4 12  6  4  2  2
  0  0  0  0  1 15 12  6  4  2  2
  0  0  0  0  0 17 15 10  6  4  2  2
  0  0  0  0  0 14 23 16 10  6  4  2  2
  0  0  0  0  0 10 30 23 14 10  6  4  2  2
  0  0  0  0  0  5 39 29 24 14 10  6  4  2  2
  0  0  0  0  0  1 42 42 31 22 14 10  6  4  2  2
Row 9 counts the following partitions:
  (432)   (54)     (63)      (72)       (81)        (9)
  (3321)  (333)    (621)     (711)      (21111111)  (111111111)
  (4221)  (441)    (6111)    (2211111)
  (4311)  (522)    (222111)  (3111111)
          (531)    (321111)
          (3222)   (411111)
          (5211)
          (22221)
          (32211)
          (33111)
          (42111)
          (51111)
		

Crossrefs

Programs

  • Mathematica
    otbmax[ptn_]:=Max@@MapIndexed[#1+#2[[1]]-1&,Append[ptn,0]];
    Table[Length[Select[IntegerPartitions[n],otbmax[#]==k&]],{n,0,15},{k,0,n}]
  • PARI
    row(n)={my(r=vector(n+1)); forpart(p=n, my(w=0); for(i=1, #p, w=max(w,#p-i+p[i])); r[w+1]++); r} \\ Andrew Howroyd, Jan 12 2024

Formula

Sum_{k=1..n} k*T(n,k) = A366157(n). - Andrew Howroyd, Jan 12 2024

A221531 Triangle read by rows: T(n,k) = A000005(n-k+1)*A000041(k-1), n>=1, k>=1.

Original entry on oeis.org

1, 2, 1, 2, 2, 2, 3, 2, 4, 3, 2, 3, 4, 6, 5, 4, 2, 6, 6, 10, 7, 2, 4, 4, 9, 10, 14, 11, 4, 2, 8, 6, 15, 14, 22, 15, 3, 4, 4, 12, 10, 21, 22, 30, 22, 4, 3, 8, 6, 20, 14, 33, 30, 44, 30, 2, 4, 6, 12, 10, 28, 22, 45, 44, 60, 42, 6, 2, 8, 9, 20, 14, 44, 30, 66, 60, 84, 56
Offset: 1

Views

Author

Omar E. Pol, Jan 19 2013

Keywords

Examples

			For n = 6:
-------------------------
k   A000041        T(6,k)
1      1  *  4   =    4
2      1  *  2   =    2
3      2  *  3   =    6
4      3  *  2   =    6
5      5  *  2   =   10
6      7  *  1   =    7
.         A000005
-------------------------
So row 6 is [4, 2, 6, 6, 10, 7]. Note that the sum of row 6 is 4+2+6+6+10+7 = 35 equals A006128(6).
.
Triangle begins:
1;
2,  1;
2,  2,  2;
3,  2,  4,  3;
2,  3,  4,  6, 5;
4,  2,  6,  6, 10, 7;
2,  4,  4,  9, 10, 14, 11;
4,  2,  8,  6, 15, 14, 22, 15;
3,  4,  4, 12, 10, 21, 22, 30, 22;
4,  3,  8,  6, 20, 14, 33, 30, 44, 30;
2,  4,  6, 12, 10, 28, 22, 45, 44, 60, 42;
6,  2,  8,  9, 20, 14, 44, 30, 66, 60, 84, 56;
...
		

Crossrefs

Mirror of A221530. Columns 1-3: A000005, A000005, A062011. Leading diagonals 1-2: A000041, A139582. Row sums give A006128.

Formula

T(n,k) = d(n-k+1)*p(k-1), n>=1, k>=1.

A220909 The second crank moment function M_2(n).

Original entry on oeis.org

0, 2, 8, 18, 40, 70, 132, 210, 352, 540, 840, 1232, 1848, 2626, 3780, 5280, 7392, 10098, 13860, 18620, 25080, 33264, 44088, 57730, 75600, 97900, 126672, 162540, 208208, 264770, 336240, 424204, 534336, 669438, 837080, 1041810, 1294344, 1601138, 1977140, 2432430, 2987040, 3655806
Offset: 0

Views

Author

N. J. A. Sloane, Jan 02 2013

Keywords

Comments

M_2(n) is defined to be Sum_{m=-n..n} m^2 M(m,n) where M(m,n) is the number of partitions of n with crank m except for n=1 where M(-1,1) = M(1,1) = -M(0,1) = 1. - Michael Somos, Nov 10 2013
From Omar E. Pol, Jul 25 2022: (Start)
Apart from the initial zero this is also:
Convolution of A074400 and A000041.
Convolution of A000203 and A139582. (End)

Examples

			G.f. = 2*x + 8*x^2 + 18*x^3 + 40*x^4 + 70*x^5 + 132*x^6 + 210*x^7 + ...
For n=1, M_2(1) = Sum_{m=-1..1} m^2 * M(m,2) = (-1)^2*1 + 0^2*(-1) + 1^2*1 = 2. For n=2, the partition [2] has crank 2 and partition [1,1] has crank -2, hence M_2(2) = 2^2 + (-2)^2 = 8. - _Michael Somos_, Nov 10 2013
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := 2 n PartitionsP @ n (* Michael Somos, Nov 10 2013 *)
  • PARI
    {a(n) = if( n<0, 0, 2 * n * polcoeff( 1 / eta(x + x * O(x^n)), n))} /* Michael Somos, Nov 10 2013 */

Formula

a(n) = 2*n*A000041(n) = 2*A066186(n).
a(n) = n*A139582(n). - Omar E. Pol, Jan 03 2013
a(n) = A220908(n) + A211982(n), n >= 1. - Omar E. Pol, Jan 17 2013
a(n) = 2*(A092269(n) + A220907(n)), n >= 1. _Omar E. Pol, Feb 18 2013
a(n) ~ exp(Pi*sqrt(2*n/3))/(2*sqrt(3)) * (1 - (sqrt(3/2)/Pi + Pi/(24*sqrt(6))) / sqrt(n)). - Vaclav Kotesovec, Oct 24 2016

A278355 a(n) = sum of the perimeters of the Ferrers boards of the partitions of n. Also, sum of the perimeters of the diagrams of the regions of the set of partitions of n.

Original entry on oeis.org

0, 4, 12, 24, 48, 80, 140, 216, 344, 512, 768, 1100, 1596, 2224, 3120, 4272, 5852, 7860, 10576, 13992, 18520, 24208, 31596, 40824, 52696, 67404, 86088, 109176, 138180, 173812, 218252, 272540, 339708, 421464, 521848, 643504, 792056, 971248, 1188804, 1450348, 1766184, 2144416, 2599164, 3141748, 3791248, 4563780
Offset: 0

Views

Author

Omar E. Pol, Nov 19 2016

Keywords

Comments

a(n) is also 4 times the total number of parts in all partitions of n.
Hence a(n) is also 4 times the sum of largest parts of all partitions of n.
Hence a(n) is also twice the total number of parts in all partitions of n plus twice the sum of largest parts of all partitions of n.
a(n) is also the sum of the perimeters of the first n polygons constructed with the Dyck path (and its mirror) that arises from the minimalist diagram of the regions of the set of partitions of n. The n-th odd-indexed segment of the diagram has A141285(n) up-steps and the n-th even-indexed segment has A194446(n) down-steps. The k-th polygon of the diagram is associated to the k-th section of the set of partitions of n, with 1<=k<=n. See the bottom of Example section. For the definition of "section" see A135010. For the definition of "region" see A206437.

Examples

			For n = 5 consider the partitions of 5 in colexicographic order (as shown in the 5th row of the triangle A211992) and its associated diagram of regions as shown below:
.                                Regions            Minimalist
.         Partitions of 5        diagram             version
.                               _ _ _ _ _
.         1, 1, 1, 1, 1        |_| | | | |          _| | | | |
.         2, 1, 1, 1           |_ _| | | |          _ _| | | |
.         3, 1, 1              |_ _ _| | |          _ _ _| | |
.         2, 2, 1              |_ _|   | |          _ _|   | |
.         4, 1                 |_ _ _ _| |          _ _ _ _| |
.         3, 2                 |_ _ _|   |          _ _|     |
.         5                    |_ _ _ _ _|          _ _ _ _ _|
.
Then consider the following table which contains the Ferrers boards of the partitions of 5 and the diagram of every region of the set of partitions of 5:
-------------------------------------------------------------------------
| Partitions  |             |       |   Regions   |             |       |
|     of 5    |   Ferrers   | Peri- |     of 5    |   Region    | Peri- |
|(See A211992)|    board    | meter |(see A220482)|   diagram   | meter |
-------------------------------------------------------------------------
|                  _                |                 _                 |
|      1          |_|               |       1        |_|            4   |
|      1          |_|               |                   _               |
|      1          |_|               |       1         _|_|              |
|      1          |_|               |       2        |_|_|          8   |
|      1          |_|          12   |                     _             |
|                  _ _              |       1            |_|            |
|      2          |_|_|             |       1         _ _|_|            |
|      1          |_|               |       3        |_|_|_|       12   |
|      1          |_|               |                 _ _               |
|      1          |_|          12   |       2        |_|_|          6   |
|                  _ _ _            |                       _           |
|      3          |_|_|_|           |       1              |_|          |
|      1          |_|               |       1              |_|          |
|      1          |_|          12   |       1             _|_|          |
|                  _ _              |       2         _ _|_|_|          |
|      2          |_|_|             |       4        |_|_|_|_|     18   |
|      2          |_|_|             |                 _ _ _             |
|      1          |_|          10   |       3        |_|_|_|        8   |
|                  _ _ _ _          |                         _         |
|      4          |_|_|_|_|         |       1                |_|        |
|      1          |_|          12   |       1                |_|        |
|                  _ _ _            |       1                |_|        |
|      3          |_|_|_|           |       1                |_|        |
|      2          |_|_|        10   |       1               _|_|        |
|                  _ _ _ _ _        |       2         _ _ _|_|_|        |
|      6          |_|_|_|_|_|  12   |       5        |_|_|_|_|_|   24   |
|                                   |                                   |
-------------------------------------------------------------------------
|   Sum of perimeters:         80         <-- equals -->           80   |
-------------------------------------------------------------------------
The sum of the perimeters of the Ferrers boards is 12 + 12 + 12 + 10 + 12 + 10 + 12 = 80, so a(5) = 80.
On the other hand, the sum of the perimeters of the diagrams of regions is 4 + 8 + 12 + 6 + 18 + 8 + 24 = 80, equaling the sum of the perimeters of the Ferrers boards.
.
Illustration of first six polygons of an infinite diagram constructed with the boundary segments of the minimalist diagram of regions and its mirror (note that the diagram looks like reflections on a mountain lake):
11............................................................
.                                                            /\
.                                                           /  \
.                                                          /    \
7...................................                      /      \
.                                  /\                    /        \
5.....................            /  \                /\/          \
.                    /\          /    \          /\  /              \
3...........        /  \        /      \        /  \/                \
2.......   /\      /    \    /\/        \      /                      \
1...  /\  /  \  /\/      \  /            \  /\/                        \
0  /\/  \/    \/          \/              \/                            \
.  \/\  /\    /\          /\              /\                            /
.     \/  \  /  \/\      /  \            /  \/\                        /
.          \/      \    /    \/\        /      \                      /
.                   \  /        \      /        \  /\                /
.                    \/          \    /          \/  \              /
.                                 \  /                \/\          /
.                                  \/                    \        /
.                                                         \      /
.                                                          \    /
.                                                           \  /
.                                                            \/
n:
. 0 1  2   3          4             5                         6
Perimeter of the n-th polygon:
. 0 4  8  12         24            32                        60
a(n) is the sum of the perimeters of the first n polygons:
. 0 4 12  24         48            80                       140
.
For n = 5, the sum of the perimeters of the first five polygons is 4 + 8 + 12 + 24 + 32 = 80, so a(5) = 80.
For n = 6, the sum of the perimeters of the first six polygons is 4 + 8 + 12 + 24 + 32 + 60 = 140, so a(6) = 140.
For another version of the above diagram see A228109.
		

Crossrefs

Formula

a(n) = 4*A006128(n) = 2*A211978(n).
a(n) = 2*A225600(2*A000041(n)) = 2*A225600(A139582(n)), n >= 1.
a(n) = 2*((Sum_{m=1..p(n)} A194446(m)) + (Sum_{m=1..p(n)} A141285(m))) = 4*Sum_{m=1..p(n)} A194446(m) = 4*Sum_{m=1..p(n)} A141285(m), where p(n) = A000041(n), n >= 1.

A299474 a(n) = 4*p(n), where p(n) is the number of partitions of n.

Original entry on oeis.org

4, 4, 8, 12, 20, 28, 44, 60, 88, 120, 168, 224, 308, 404, 540, 704, 924, 1188, 1540, 1960, 2508, 3168, 4008, 5020, 6300, 7832, 9744, 12040, 14872, 18260, 22416, 27368, 33396, 40572, 49240, 59532, 71908, 86548, 104060, 124740, 149352, 178332, 212696, 253044, 300700, 356536, 422232, 499016, 589092, 694100, 816904
Offset: 0

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

For n >= 1, a(n) is also the number of edges in the diagram of partitions of n, in which A299475(n) is the number of vertices and A000041(n) is the number of regions (see example and Euler's formula).

Examples

			Construction of a modular table of partitions in which a(n) is the number of edges of the diagram after n-th stage (n = 1..6):
--------------------------------------------------------------------------------
n ........:   1     2       3         4           5             6     (stage)
a(n)......:   4     8      12        20          28            44     (edges)
A299475(n):   4     7      10        16          22            34     (vertices)
A000041(n):   1     2       3         5           7            11     (regions)
--------------------------------------------------------------------------------
r     p(n)
--------------------------------------------------------------------------------
.             _    _ _    _ _ _    _ _ _ _    _ _ _ _ _    _ _ _ _ _ _
1 .... 1 ....|_|  |_| |  |_| | |  |_| | | |  |_| | | | |  |_| | | | | |
2 .... 2 .........|_ _|  |_ _| |  |_ _| | |  |_ _| | | |  |_ _| | | | |
3 .... 3 ................|_ _ _|  |_ _ _| |  |_ _ _| | |  |_ _ _| | | |
4                                 |_ _|   |  |_ _|   | |  |_ _|   | | |
5 .... 5 .........................|_ _ _ _|  |_ _ _ _| |  |_ _ _ _| | |
6                                            |_ _ _|   |  |_ _ _|   | |
7 .... 7 ....................................|_ _ _ _ _|  |_ _ _ _ _| |
8                                                         |_ _|   |   |
9                                                         |_ _ _ _|   |
10                                                        |_ _ _|     |
11 .. 11 .................................................|_ _ _ _ _ _|
.
Apart from the axis x, the r-th horizontal line segment has length A141285(r), equaling the largest part of the r-th region of the diagram.
Apart from the axis y, the r-th vertical line segment has length A194446(r), equaling the number of parts in the r-th region of the diagram.
The total number of parts equals the sum of largest parts.
Note that every diagram contains all previous diagrams.
An infinite diagram is a table of all partitions of all positive integers.
		

Crossrefs

k times partition numbers: A000041 (k=1), A139582 (k=2), A299473 (k=3), this sequence (k=4).

Programs

  • GAP
    List([0..50],n->4*NrPartitions(n)); # Muniru A Asiru, Jul 10 2018
    
  • Maple
    with(combinat): seq(4*numbpart(n),n=0..50); # Muniru A Asiru, Jul 10 2018
  • Mathematica
    4*PartitionsP[Range[0,50]] (* Harvey P. Dale, Dec 05 2023 *)
  • PARI
    a(n) = 4*numbpart(n); \\ Michel Marcus, Jul 15 2018
    
  • Python
    from sympy.ntheory import npartitions
    def a(n): return 4*npartitions(n)
    print([a(n) for n in range(51)]) # Michael S. Branicky, Apr 04 2021

Formula

a(n) = 4*A000041(n) = 2*A139582(n).
a(n) = A000041(n) + A299475(n) - 1, n >= 1 (Euler's formula).
a(n) = A000041(n) + A299473(n). - Omar E. Pol, Aug 11 2018
Showing 1-10 of 22 results. Next