A139622 Triangle read by rows: T(n,k) is the number of strongly connected directed multigraphs with loops, with n arcs and k vertices.
1, 1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 10, 19, 6, 1, 1, 19, 73, 59, 9, 1, 1, 28, 208, 350, 138, 12, 1, 1, 44, 534, 1670, 1361, 301, 16, 1, 1, 60, 1215, 6476, 9724, 4364, 575, 20, 1, 1, 85, 2542, 21898, 55707, 45284, 12131, 1042, 25, 1, 1, 110, 4951, 65789, 268329, 365063, 175416, 30090, 1749, 30, 1
Offset: 1
Examples
Triangle begins: 1 1 1 1 2 1 1 6 4 1 1 10 19 6 1 1 19 73 59 9 1 1 28 208 350 138 12 1 1 44 534 1670 1361 301 16 1 ... T(4 edges, 2 vertices)=6: one graph 1->1, 1->1, 2->1, 1->2; one graph 1->1, 2->1, 2->1, 1->2; one graph 1->1, 1->2, 1->2, 2->1; one graph 1->1, 1->2, 2->1, 2->2; one graph 2->1, 2->1, 2->1, 1->2; one graph 1->2, 1->2, 2->1, 2->1. T(4 edges, 3 vertices)=4: one graph 1->1, 2->1, 3->2, 1->3; one graph 2->1, 2->1, 3->2, 1->3; one graph 2->1, 3->1, 1->2, 1->3; one graph 2->1, 3->1, 1->2, 2->3.
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..820 (rows 1..40)
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 (2017) Table 73.
Programs
-
PARI
\\ See PARI link in A350489 for program code. { my(A=A139622rows(10)); for(n=1, #A, print(A[n])) } \\ Andrew Howroyd, Jan 14 2022
Formula
T(n,1) = T(n,n) = 1.
T(n,2) = A139621(n,2) - n(n+1)/2.
Extensions
More terms from R. J. Mathar, Aug 11 2017
Terms a(34) and beyond from Andrew Howroyd, Jan 14 2022