cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A139621 Triangle read by rows: T(n,k) is the number of connected directed multigraphs with loops and no vertex of degree 0, with n arcs and k vertices.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 8, 15, 8, 1, 16, 57, 66, 27, 1, 25, 163, 353, 295, 91, 1, 40, 419, 1504, 2203, 1407, 350, 1, 56, 932, 5302, 12382, 13372, 6790, 1376, 1, 80, 1940, 16549, 58237, 96456, 80736, 33628, 5743, 1, 105, 3743, 46566, 237904, 573963, 717114, 482730, 168645, 24635
Offset: 0

Views

Author

Benoit Jubin, May 01 2008

Keywords

Comments

Length of the n-th row: n+1.

Examples

			Triangle begins:
     1
     1     1
     1     4     3
     1     8    15     8
     1    16    57    66    27
     1    25   163   353   295    91
     1    40   419  1504  2203  1407   350
     1    56   932  5302 12382 13372  6790  1376
T(2 arcs, 2 vertices) = 4: one graph 1->1, 2->1; one graph with 1->1, 1->2; one graph with 2->1, 2->1, one graph with 1->2, 2->1.
T(2 arcs, 3 vertices) = 3: one graph 2->1, 3->1; one graph 2->1, 3->2; one graph 2->1, 2->3.
		

Crossrefs

Cf. A129620, A136564, A139622, A137975 (row sums), A000238 (diagonal).

Programs

  • PARI
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
    T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
    {my(A=T(10)); for(n=1, #A, print(A[n,1..n]))} \\ Andrew Howroyd, Oct 22 2019

Formula

T(n,1) = 1.
T(n,2) = A136564(n,2) - floor(n/2).

Extensions

Prepended a(0)=1 to have a regular triangle, Joerg Arndt, Apr 14 2013
More terms from R. J. Mathar, Jul 31 2017
Terms a(34) and beyond from Andrew Howroyd, Oct 22 2019

A139627 Number of strongly connected directed multigraphs with loops allowed and with n arcs.

Original entry on oeis.org

1, 1, 2, 4, 12, 37, 162, 738, 3928, 22436, 138716, 911529, 6339770, 46336941, 354453138, 2826472249, 23423053967, 201179882629, 1786791372857, 16377359709120, 154644691266520, 1502016160624186, 14985219655673207, 153377735526218010, 1608741204839374373
Offset: 0

Views

Author

Benoit Jubin, May 01 2008

Keywords

Comments

The term a(0)=1 can be interpreted as either a singleton vertex or the graph with no vertices. - Andrew Howroyd, Jan 14 2022

Crossrefs

Row sums of A139622.

Programs

Extensions

3 more terms from R. J. Mathar, Aug 04 2017
Terms a(7) and beyond from Andrew Howroyd, Jan 14 2022

A143841 Table read by antidiagonals: T(n,k) is the number of strongly connected directed multigraphs with loops with n arcs and up to k vertices.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 7, 1, 0, 1, 1, 2, 4, 11, 11, 1, 0, 1, 1, 2, 4, 12, 30, 20, 1, 0, 1, 1, 2, 4, 12, 36, 93, 29, 1, 0, 1, 1, 2, 4, 12, 37, 152, 237, 45, 1, 0, 1, 1, 2, 4, 12, 37, 161, 587, 579, 61, 1, 0
Offset: 0

Views

Author

Benoit Jubin, Sep 02 2008

Keywords

Examples

			Array begins:
=============================================
n\k | 0 1  2   3    4    5    6    7    8
----+----------------------------------------
  0 | 1 1  1   1    1    1    1    1    1 ...
  1 | 0 1  1   1    1    1    1    1    1 ...
  2 | 0 1  2   2    2    2    2    2    2 ...
  3 | 0 1  3   4    4    4    4    4    4 ...
  4 | 0 1  7  11   12   12   12   12   12 ...
  5 | 0 1 11  30   36   37   37   37   37 ...
  6 | 0 1 20  93  152  161  162  162  162 ...
  7 | 0 1 29 237  587  725  737  738  738 ...
  8 | 0 1 45 579 2249 3610 3911 3927 3928 ...
  ...
		

Crossrefs

Partial sums of the rows of A139622.
Main diagonal is A139627.

Programs

  • PARI
    \\ See PARI link in A350489 for program code.
    A(n)={my(data=A139622rows(n), M=matrix(n+1, n+1, i, j, if(i==1, 1, sum(k=1, min(i-1,j-1), data[i-1][k])))); M}
    { my(M=A(8)); for(n=1, #M~, print(M[n,])) } \\ Andrew Howroyd, Jan 14 2022

Formula

T(n,k) = Sum_{p=0..k} A139622(n,p).
T(n,k) = A139627(n) for k >= n.
T(n,2) = A129620(n,2) - n*(n-1)/2.

Extensions

Name clarified and terms a(32) and beyond from Andrew Howroyd, Jan 14 2022
Showing 1-3 of 3 results.