cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A137975 Row sums of A139621, number of connected directed multigraphs with loops and no vertex of degree 0, with n arcs.

Original entry on oeis.org

1, 2, 8, 32, 167, 928, 5924, 40211, 293370, 2255406, 18201706, 153176115, 1339271815, 12124484941, 113362749476, 1092329626380, 10827837622018, 110249198676581, 1151562885666429, 12324860339781102, 135026515460855978, 1512882677086123938, 17321462912397361409, 202503301170606347695, 2415733704608822524946, 29387239261415606708127
Offset: 0

Views

Author

Benoit Jubin, May 01 2008, May 10 2008

Keywords

Comments

Inverse Euler transform of A052171.

Crossrefs

Row sums of A139621.

Programs

  • PARI
    \\ See A139621 for G, InvEulerMT.
    seq(n)={vecsum([Vec(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])} \\ Andrew Howroyd, Oct 22 2019

Extensions

Data corrected to match A052171. - R. J. Mathar, Jul 25 2017

A139622 Triangle read by rows: T(n,k) is the number of strongly connected directed multigraphs with loops, with n arcs and k vertices.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 10, 19, 6, 1, 1, 19, 73, 59, 9, 1, 1, 28, 208, 350, 138, 12, 1, 1, 44, 534, 1670, 1361, 301, 16, 1, 1, 60, 1215, 6476, 9724, 4364, 575, 20, 1, 1, 85, 2542, 21898, 55707, 45284, 12131, 1042, 25, 1, 1, 110, 4951, 65789, 268329, 365063, 175416, 30090, 1749, 30, 1
Offset: 1

Views

Author

Benoit Jubin, May 01 2008

Keywords

Examples

			Triangle begins:
    1
    1    1
    1    2    1
    1    6    4    1
    1   10   19    6    1
    1   19   73   59    9    1
    1   28  208  350  138   12    1
    1   44  534 1670 1361  301   16  1
    ...
T(4 edges, 2 vertices)=6: one graph 1->1, 1->1, 2->1, 1->2; one graph 1->1, 2->1, 2->1, 1->2; one graph 1->1, 1->2, 1->2, 2->1; one graph 1->1, 1->2, 2->1, 2->2; one graph 2->1, 2->1, 2->1, 1->2; one graph 1->2, 1->2, 2->1, 2->1.
T(4 edges, 3 vertices)=4: one graph 1->1, 2->1, 3->2, 1->3; one graph 2->1, 2->1, 3->2, 1->3; one graph 2->1, 3->1, 1->2, 1->3; one graph 2->1, 3->1, 1->2, 2->3.
		

Crossrefs

Row sums are A139627.

Programs

Formula

T(n,1) = T(n,n) = 1.
T(n,2) = A139621(n,2) - n(n+1)/2.

Extensions

More terms from R. J. Mathar, Aug 11 2017
Terms a(34) and beyond from Andrew Howroyd, Jan 14 2022

A143841 Table read by antidiagonals: T(n,k) is the number of strongly connected directed multigraphs with loops with n arcs and up to k vertices.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 7, 1, 0, 1, 1, 2, 4, 11, 11, 1, 0, 1, 1, 2, 4, 12, 30, 20, 1, 0, 1, 1, 2, 4, 12, 36, 93, 29, 1, 0, 1, 1, 2, 4, 12, 37, 152, 237, 45, 1, 0, 1, 1, 2, 4, 12, 37, 161, 587, 579, 61, 1, 0
Offset: 0

Views

Author

Benoit Jubin, Sep 02 2008

Keywords

Examples

			Array begins:
=============================================
n\k | 0 1  2   3    4    5    6    7    8
----+----------------------------------------
  0 | 1 1  1   1    1    1    1    1    1 ...
  1 | 0 1  1   1    1    1    1    1    1 ...
  2 | 0 1  2   2    2    2    2    2    2 ...
  3 | 0 1  3   4    4    4    4    4    4 ...
  4 | 0 1  7  11   12   12   12   12   12 ...
  5 | 0 1 11  30   36   37   37   37   37 ...
  6 | 0 1 20  93  152  161  162  162  162 ...
  7 | 0 1 29 237  587  725  737  738  738 ...
  8 | 0 1 45 579 2249 3610 3911 3927 3928 ...
  ...
		

Crossrefs

Partial sums of the rows of A139622.
Main diagonal is A139627.

Programs

  • PARI
    \\ See PARI link in A350489 for program code.
    A(n)={my(data=A139622rows(n), M=matrix(n+1, n+1, i, j, if(i==1, 1, sum(k=1, min(i-1,j-1), data[i-1][k])))); M}
    { my(M=A(8)); for(n=1, #M~, print(M[n,])) } \\ Andrew Howroyd, Jan 14 2022

Formula

T(n,k) = Sum_{p=0..k} A139622(n,p).
T(n,k) = A139627(n) for k >= n.
T(n,2) = A129620(n,2) - n*(n-1)/2.

Extensions

Name clarified and terms a(32) and beyond from Andrew Howroyd, Jan 14 2022
Showing 1-3 of 3 results.