cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A052171 Number of directed multigraphs with loops on an infinite set of nodes containing a total of n arcs.

Original entry on oeis.org

1, 2, 11, 52, 296, 1724, 11060, 74527, 533046, 3999187, 31412182, 257150093, 2188063401, 19299062896, 176059781439, 1657961491087, 16089088019098, 160643776819423, 1648068916722737, 17351137043998280, 187255329043638437, 2069426416836401375, 23397468305569068113, 270406562951254606048, 3191908298072118225550, 38454691427657997701136
Offset: 0

Views

Author

Vladeta Jovovic, Jan 26 2000

Keywords

Comments

Row sums of A136564, limiting values of A138107. - Benoit Jubin, May 13 2008
Euler transform of A137975. - M. F. Hasler, Jul 31 2017

Crossrefs

Cf. A104209. Cf. A137975 (connected).

Formula

a(n) = A138107(2*n,n). - Max Alekseyev, Oct 17 2017

Extensions

a(16)-a(25) from Max Alekseyev, Jun 21 2011

A139621 Triangle read by rows: T(n,k) is the number of connected directed multigraphs with loops and no vertex of degree 0, with n arcs and k vertices.

Original entry on oeis.org

1, 1, 1, 1, 4, 3, 1, 8, 15, 8, 1, 16, 57, 66, 27, 1, 25, 163, 353, 295, 91, 1, 40, 419, 1504, 2203, 1407, 350, 1, 56, 932, 5302, 12382, 13372, 6790, 1376, 1, 80, 1940, 16549, 58237, 96456, 80736, 33628, 5743, 1, 105, 3743, 46566, 237904, 573963, 717114, 482730, 168645, 24635
Offset: 0

Views

Author

Benoit Jubin, May 01 2008

Keywords

Comments

Length of the n-th row: n+1.

Examples

			Triangle begins:
     1
     1     1
     1     4     3
     1     8    15     8
     1    16    57    66    27
     1    25   163   353   295    91
     1    40   419  1504  2203  1407   350
     1    56   932  5302 12382 13372  6790  1376
T(2 arcs, 2 vertices) = 4: one graph 1->1, 2->1; one graph with 1->1, 1->2; one graph with 2->1, 2->1, one graph with 1->2, 2->1.
T(2 arcs, 3 vertices) = 3: one graph 2->1, 3->1; one graph 2->1, 3->2; one graph 2->1, 2->3.
		

Crossrefs

Cf. A129620, A136564, A139622, A137975 (row sums), A000238 (diagonal).

Programs

  • PARI
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
    T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
    {my(A=T(10)); for(n=1, #A, print(A[n,1..n]))} \\ Andrew Howroyd, Oct 22 2019

Formula

T(n,1) = 1.
T(n,2) = A136564(n,2) - floor(n/2).

Extensions

Prepended a(0)=1 to have a regular triangle, Joerg Arndt, Apr 14 2013
More terms from R. J. Mathar, Jul 31 2017
Terms a(34) and beyond from Andrew Howroyd, Oct 22 2019

A129620 Square array read by falling antidiagonals: T(n,k) is the number of connected directed multigraphs with loops with n arcs and at most k vertices.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 5, 1, 0, 1, 2, 8, 9, 1, 0, 1, 2, 8, 24, 17, 1, 0, 1, 2, 8, 32, 74, 26, 1, 0, 1, 2, 8, 32, 140, 189, 41, 1, 0, 1, 2, 8, 32, 167, 542, 460, 57, 1, 0, 1, 2, 8, 32, 167, 837, 1964, 989, 81, 1, 0, 1, 2, 8, 32, 167, 928, 4167, 6291, 2021, 106, 1, 0
Offset: 0

Views

Author

Benoit Jubin, May 06 2008

Keywords

Comments

Partial sums of the rows of A139621, i.e., T(n,k) = sum(A139621(n,p),p=0..k).

Examples

			1  1  1  1  1  1  ...
0  1  2  2  2  2  ...
0  1  5  8  8  8  ...
0  1  9 24 32 32  ...
0  1  17  (...)
(...)
		

Crossrefs

Formula

T(n,2) = A138107(n,2) - floor(n/2).
If k >= n+1, T(n,k) = A137975(n).

Extensions

Name edited by M. F. Hasler, Jul 31 2017
Terms a(32) and beyond from Andrew Howroyd, Oct 22 2019
Showing 1-3 of 3 results.