A007717
Number of symmetric polynomial functions of degree n of a symmetric matrix (of indefinitely large size) under joint row and column permutations. Also number of multigraphs with n edges (allowing loops) on an infinite set of nodes.
Original entry on oeis.org
1, 2, 7, 23, 79, 274, 1003, 3763, 14723, 59663, 250738, 1090608, 4905430, 22777420, 109040012, 537401702, 2723210617, 14170838544, 75639280146, 413692111521, 2316122210804, 13261980807830, 77598959094772, 463626704130058, 2826406013488180, 17569700716557737
Offset: 0
a(2) = 7 (here - denotes an edge, = denotes a pair of parallel edges and o is a loop):
oo
o o
o-
o -
=
--
- -
From _Gus Wiseman_, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(2) = 7 multiset partitions of {1, 1, 2, 2}:
(1122),
(1)(122), (11)(22), (12)(12),
(1)(1)(22), (1)(2)(12),
(1)(1)(2)(2).
(End)
From _Gus Wiseman_, Jan 08 2024: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 rooted loopless multigraphs (root shown as singleton):
{{1}} {{1},{1,2}} {{1},{1,2},{1,2}}
{{1},{2,3}} {{1},{1,2},{1,3}}
{{1},{1,2},{2,3}}
{{1},{1,2},{3,4}}
{{1},{2,3},{2,3}}
{{1},{2,3},{2,4}}
{{1},{2,3},{4,5}}
(End)
- Huaien Li and David C. Torney, Enumerations of Multigraphs, 2002.
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Mateo Díaz, Dmitriy Drusvyatskiy, Jack Kendrick, and Rekha R. Thomas, Invariant Kernels: Rank Stabilization and Generalization Across Dimensions, arXiv:2502.01886 [math.OC], 2025. See p. 43.
- Huaien Li and David C. Torney, Enumeration of unlabelled multigraphs, Ars Combin. 75 (2005) 171-188. MR2133219.
- R. J. Mathar, Statistics on Small Graphs, arXiv:1709.09000 [math.CO] (2017) table 67.
Cf.
A000664,
A002620,
A007716,
A007719,
A020555,
A050531,
A050532,
A050535,
A052171,
A053418,
A053419,
A094574,
A316972,
A316974,
A318951,
A339065.
-
permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
RowSumMats[n_, m_, k_] := Module[{s=0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
a[n_] := RowSumMats[n, 2n, 2];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
-
\\ See A318951 for RowSumMats
a(n)=RowSumMats(n, 2*n, 2); \\ Andrew Howroyd, Sep 06 2018
-
\\ See A339065 for G.
seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1]))} \\ Andrew Howroyd, Nov 22 2020
a(0)=1 prepended and a(16)-a(25) added by
Max Alekseyev, Jun 21 2011
A138107
Infinite square array: T(n,k) = number of directed multigraphs with loops with n arcs and k vertices; read by falling antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 6, 1, 0, 1, 2, 10, 10, 1, 0, 1, 2, 11, 31, 19, 1, 0, 1, 2, 11, 47, 90, 28, 1, 0, 1, 2, 11, 51, 198, 222, 44, 1, 0, 1, 2, 11, 52, 269, 713, 520, 60, 1, 0, 1, 2, 11, 52, 291, 1270, 2423, 1090, 85, 1, 0, 1, 2, 11, 52, 295, 1596, 5776, 7388, 2180, 110, 1, 0
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 6, 10, 11, 11, 11, 11, 11, ...
0, 1, 10, 31, 47, 51, 52, 52, 52, ...
0, 1, 19, 90, 198, 269, 291, 295, 296, 296, ...
0, 1, 28, 222, 713, 1270, 1596, 1697, 1719, 1723, ...
0, 1, 44, 520, 2423, 5776, 8838, 10425, 10922, ...
0, 1, 60, 1090, 7388, 24032, 46384, ...
0, 1, 85, 2180, 21003, 93067, ...
0, 1, 110, 4090, ...
...
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
{my(A=T(10)); for(n=1, #A, print(A[n,]))} \\ Andrew Howroyd, Oct 22 2019
A104209
Number of labeled directed multigraphs with n arrows and no vertex of degree 0.
Original entry on oeis.org
1, 3, 39, 819, 23949, 898947, 41212155, 2232057171, 139455901101, 9873341493231, 781184921112075, 68309191570851759, 6541702440222052137, 680922615974259589527, 76544749927261960908807, 9241807764375868372683255, 1192762017796744530286451865
Offset: 0
Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Mar 13 2005
a(1)=3, the three graphs being (1 -> 2), (2 -> 1) and (1 -> 1).
- J.-C. Novelli, J.-Y. Thibon and N. M. Thiéry, Algèbres de Hopf de graphes [Hopf algebras of graphs], C.R. Acad. Sci. Paris (Comptes Rendus Mathématique), 339 (2004), 607-610.
Cf.
A052171 (counts same objects up to labeling).
-
d:=proc(n) local m;sum(binomial(m^2+n-1,n)/2^(m+1),m=0..infinity);end;
-
f[n_] := Sum[ Binomial[m^2 + n - 1, n]/2^(m + 1), {m, 0, Infinity}]; Table[ f[n], {n, 0, 15}] (* Robert G. Wilson v, Mar 16 2005 *)
Table[Sum[Sum[(-1)^(k-j)*Binomial[k,j]*Binomial[j^2+n-1,n],{j,0,k}],{k,0,2*n}],{n,0,20}] (* Vaclav Kotesovec, May 03 2015, much faster *)
A136564
Array read by rows: T(n,k) is the number of directed multigraphs with loops with n arcs, k vertices, and no vertex of degree 0.
Original entry on oeis.org
1, 1, 1, 5, 4, 1, 1, 9, 21, 16, 4, 1, 1, 18, 71, 108, 71, 22, 4, 1, 1, 27, 194, 491, 557, 326, 101, 22, 4, 1, 1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1, 1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1, 1, 84, 2095, 18823, 72064
Offset: 1
1, 1;
1, 5, 4, 1;
1, 9, 21, 16, 4, 1;
1, 18, 71, 108, 71, 22, 4, 1;
1, 27, 194, 491, 557, 326, 101, 22, 4, 1;
1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1;
1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1;
A137975
Row sums of A139621, number of connected directed multigraphs with loops and no vertex of degree 0, with n arcs.
Original entry on oeis.org
1, 2, 8, 32, 167, 928, 5924, 40211, 293370, 2255406, 18201706, 153176115, 1339271815, 12124484941, 113362749476, 1092329626380, 10827837622018, 110249198676581, 1151562885666429, 12324860339781102, 135026515460855978, 1512882677086123938, 17321462912397361409, 202503301170606347695, 2415733704608822524946, 29387239261415606708127
Offset: 0
-
\\ See A139621 for G, InvEulerMT.
seq(n)={vecsum([Vec(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])} \\ Andrew Howroyd, Oct 22 2019
A139627
Number of strongly connected directed multigraphs with loops allowed and with n arcs.
Original entry on oeis.org
1, 1, 2, 4, 12, 37, 162, 738, 3928, 22436, 138716, 911529, 6339770, 46336941, 354453138, 2826472249, 23423053967, 201179882629, 1786791372857, 16377359709120, 154644691266520, 1502016160624186, 14985219655673207, 153377735526218010, 1608741204839374373
Offset: 0
A121137
Number of labeled directed multigraphs (without loops) with n arcs and no vertex of degree 0.
Original entry on oeis.org
1, 2, 27, 572, 16787, 631362, 28980861, 1570956872, 98212870233, 6956704585554, 550626446263423, 48163137319172436, 4613554511554200251, 480324019903607680066, 54004504167811544647161, 6521368218660772789452944, 841771274136198763040518633
Offset: 0
-
seq(sum(binomial(m*(m-1)+n-1,n)/2^(m+1),m=0..infinity),n=0..10);
# alternate program
A121137:= n -> add(add(binomial(m, q)*(-1)^(m-q)*binomial(n+q*(q-1)-1, n), q=0..m), m=0..2*n):
seq(A121137(n), n=0..20); # Marko Riedel, Jan 26 2025
A364088
Number of directed multigraphs with loops containing n edges and an infinite number of vertices modulo isomorphism and reversal of all edge directions.
Original entry on oeis.org
1, 2, 9, 37, 186, 985, 5953, 38689, 271492, 2016845, 15767277, 128792803, 1094819196, 9652396448, 88040449618, 829019941267, 8044691126159, 80322444793338, 824036583310711, 8675576699596604, 93627696274152013
Offset: 0
Cf.
A052171 (without identifying graphs obtained from each other by reversal of all edge directions).
Showing 1-8 of 8 results.
Comments