cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A007717 Number of symmetric polynomial functions of degree n of a symmetric matrix (of indefinitely large size) under joint row and column permutations. Also number of multigraphs with n edges (allowing loops) on an infinite set of nodes.

Original entry on oeis.org

1, 2, 7, 23, 79, 274, 1003, 3763, 14723, 59663, 250738, 1090608, 4905430, 22777420, 109040012, 537401702, 2723210617, 14170838544, 75639280146, 413692111521, 2316122210804, 13261980807830, 77598959094772, 463626704130058, 2826406013488180, 17569700716557737
Offset: 0

Views

Author

Keywords

Comments

Euler transform of A007719.
Also the number of non-isomorphic multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
Number of distinct n X 2n matrices with integer entries and rows sums 2, up to row and column permutations. - Andrew Howroyd, Sep 06 2018
a(n) is the number of unlabeled loopless multigraphs with n edges rooted at one vertex. - Andrew Howroyd, Nov 22 2020

Examples

			a(2) = 7 (here - denotes an edge, = denotes a pair of parallel edges and o is a loop):
  oo
  o o
  o-
  o -
  =
  --
  - -
From _Gus Wiseman_, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(2) = 7 multiset partitions of {1, 1, 2, 2}:
  (1122),
  (1)(122), (11)(22), (12)(12),
  (1)(1)(22), (1)(2)(12),
  (1)(1)(2)(2).
(End)
From _Gus Wiseman_, Jan 08 2024: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 rooted loopless multigraphs (root shown as singleton):
  {{1}}  {{1},{1,2}}  {{1},{1,2},{1,2}}
         {{1},{2,3}}  {{1},{1,2},{1,3}}
                      {{1},{1,2},{2,3}}
                      {{1},{1,2},{3,4}}
                      {{1},{2,3},{2,3}}
                      {{1},{2,3},{2,4}}
                      {{1},{2,3},{4,5}}
(End)
		

References

  • Huaien Li and David C. Torney, Enumerations of Multigraphs, 2002.

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
    Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
    RowSumMats[n_, m_, k_] := Module[{s=0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
    a[n_] := RowSumMats[n, 2n, 2];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
  • PARI
    \\ See A318951 for RowSumMats
    a(n)=RowSumMats(n, 2*n, 2); \\ Andrew Howroyd, Sep 06 2018
    
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1]))} \\ Andrew Howroyd, Nov 22 2020

Extensions

More terms from Vladeta Jovovic, Jan 26 2000
a(0)=1 prepended and a(16)-a(25) added by Max Alekseyev, Jun 21 2011

A138107 Infinite square array: T(n,k) = number of directed multigraphs with loops with n arcs and k vertices; read by falling antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 6, 1, 0, 1, 2, 10, 10, 1, 0, 1, 2, 11, 31, 19, 1, 0, 1, 2, 11, 47, 90, 28, 1, 0, 1, 2, 11, 51, 198, 222, 44, 1, 0, 1, 2, 11, 52, 269, 713, 520, 60, 1, 0, 1, 2, 11, 52, 291, 1270, 2423, 1090, 85, 1, 0, 1, 2, 11, 52, 295, 1596, 5776, 7388, 2180, 110, 1, 0
Offset: 0

Views

Author

Benoit Jubin, May 03 2008

Keywords

Comments

Partial sums of the rows of A136564.

Examples

			The array begins:
   1, 1,   1,    1,     1,     1,     1,     1,     1, ...
   0, 1,   2,    2,     2,     2,     2,     2,     2, ...
   0, 1,   6,   10,    11,    11,    11,    11,    11, ...
   0, 1,  10,   31,    47,    51,    52,    52,    52, ...
   0, 1,  19,   90,   198,   269,   291,   295,   296,  296, ...
   0, 1,  28,  222,   713,  1270,  1596,  1697,  1719, 1723, ...
   0, 1,  44,  520,  2423,  5776,  8838, 10425, 10922, ...
   0, 1,  60, 1090,  7388, 24032, 46384, ...
   0, 1,  85, 2180, 21003, 93067, ...
   0, 1, 110, 4090, ...
   ...
		

Crossrefs

Columns k=0..4 are: A000007, A000012, A005993, A050927, A050929.
Main diagonal is A362387.

Programs

  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n,]))} \\ Andrew Howroyd, Oct 22 2019

Formula

T(n,k) = Sum_{p=0..k} A136564(n,p).
If k >= 2n, T(n,k) = A052171(n).

Extensions

More terms from Vladeta Jovovic and Benoit Jubin, Sep 10 2008

A104209 Number of labeled directed multigraphs with n arrows and no vertex of degree 0.

Original entry on oeis.org

1, 3, 39, 819, 23949, 898947, 41212155, 2232057171, 139455901101, 9873341493231, 781184921112075, 68309191570851759, 6541702440222052137, 680922615974259589527, 76544749927261960908807, 9241807764375868372683255, 1192762017796744530286451865
Offset: 0

Views

Author

Jean-Yves Thibon (jyt(AT)univ-mlv.fr), Mar 13 2005

Keywords

Comments

These are the dimensions of the homogeneous components of a commutative graded Hopf algebra generalizing quasi-symmetric functions.

Examples

			a(1)=3, the three graphs being (1 -> 2), (2 -> 1) and (1 -> 1).
		

Crossrefs

Cf. A052171 (counts same objects up to labeling).

Programs

  • Maple
    d:=proc(n) local m;sum(binomial(m^2+n-1,n)/2^(m+1),m=0..infinity);end;
  • Mathematica
    f[n_] := Sum[ Binomial[m^2 + n - 1, n]/2^(m + 1), {m, 0, Infinity}]; Table[ f[n], {n, 0, 15}] (* Robert G. Wilson v, Mar 16 2005 *)
    Table[Sum[Sum[(-1)^(k-j)*Binomial[k,j]*Binomial[j^2+n-1,n],{j,0,k}],{k,0,2*n}],{n,0,20}] (* Vaclav Kotesovec, May 03 2015, much faster *)

Formula

a(n) = Sum_{m >=0} binomial(m^2+n-1, n)/2^(m+1).
G.f.: Sum_{m >= 0} (1-x)^(-m^2)/2^(m+1). Row sums of A120945. - Vladeta Jovovic, Sep 25 2006
a(n) ~ c * 2^(2*n) * n! / (sqrt(n) * (log(2))^(2*n)), where c = 0.432167265869761794333243584356866417673557873163120324347... = 2^(log(2)/8 - 1) / (sqrt(Pi) * log(2)). - Vaclav Kotesovec, May 03 2015, updated Mar 21 2018

Extensions

Corrected and extended by Robert G. Wilson v, Mar 16 2005
Offset corrected by Vaclav Kotesovec, May 03 2015

A136564 Array read by rows: T(n,k) is the number of directed multigraphs with loops with n arcs, k vertices, and no vertex of degree 0.

Original entry on oeis.org

1, 1, 1, 5, 4, 1, 1, 9, 21, 16, 4, 1, 1, 18, 71, 108, 71, 22, 4, 1, 1, 27, 194, 491, 557, 326, 101, 22, 4, 1, 1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1, 1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1, 1, 84, 2095, 18823, 72064
Offset: 1

Views

Author

Benoit Jubin, Apr 14 2008

Keywords

Comments

Length of the n^th row: 2n.

Examples

			1, 1;
1, 5, 4, 1;
1, 9, 21, 16, 4, 1;
1, 18, 71, 108, 71, 22, 4, 1;
1, 27, 194, 491, 557, 326, 101, 22, 4, 1;
1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1;
1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1;
		

Crossrefs

Row sums: A052171. Partial row sums: A138107.
Sums of the first m entries of each row: A005993 (m=2), A050927 (m=3), A050929 (m=4).

Formula

T(n,1) = 1 if n > 0.
T(n,2n) = 1 if n > 0.
T(n,2n-1) = 4 if n >= 2.
T(n,2n-k) = A144047(k) for n large enough (conjecturally, n >= 2k is enough).
T(n,2) = (n^3 + 6*n^2 + 11*n - 6)/12 + ((n+2)/4)[n even]. (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012

Extensions

More terms from Benoit Jubin and Vladeta Jovovic, Sep 08 2008

A137975 Row sums of A139621, number of connected directed multigraphs with loops and no vertex of degree 0, with n arcs.

Original entry on oeis.org

1, 2, 8, 32, 167, 928, 5924, 40211, 293370, 2255406, 18201706, 153176115, 1339271815, 12124484941, 113362749476, 1092329626380, 10827837622018, 110249198676581, 1151562885666429, 12324860339781102, 135026515460855978, 1512882677086123938, 17321462912397361409, 202503301170606347695, 2415733704608822524946, 29387239261415606708127
Offset: 0

Views

Author

Benoit Jubin, May 01 2008, May 10 2008

Keywords

Comments

Inverse Euler transform of A052171.

Crossrefs

Row sums of A139621.

Programs

  • PARI
    \\ See A139621 for G, InvEulerMT.
    seq(n)={vecsum([Vec(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])} \\ Andrew Howroyd, Oct 22 2019

Extensions

Data corrected to match A052171. - R. J. Mathar, Jul 25 2017

A139627 Number of strongly connected directed multigraphs with loops allowed and with n arcs.

Original entry on oeis.org

1, 1, 2, 4, 12, 37, 162, 738, 3928, 22436, 138716, 911529, 6339770, 46336941, 354453138, 2826472249, 23423053967, 201179882629, 1786791372857, 16377359709120, 154644691266520, 1502016160624186, 14985219655673207, 153377735526218010, 1608741204839374373
Offset: 0

Views

Author

Benoit Jubin, May 01 2008

Keywords

Comments

The term a(0)=1 can be interpreted as either a singleton vertex or the graph with no vertices. - Andrew Howroyd, Jan 14 2022

Crossrefs

Row sums of A139622.

Programs

Extensions

3 more terms from R. J. Mathar, Aug 04 2017
Terms a(7) and beyond from Andrew Howroyd, Jan 14 2022

A121137 Number of labeled directed multigraphs (without loops) with n arcs and no vertex of degree 0.

Original entry on oeis.org

1, 2, 27, 572, 16787, 631362, 28980861, 1570956872, 98212870233, 6956704585554, 550626446263423, 48163137319172436, 4613554511554200251, 480324019903607680066, 54004504167811544647161, 6521368218660772789452944, 841771274136198763040518633
Offset: 0

Views

Author

Vladeta Jovovic, Sep 06 2006

Keywords

Crossrefs

Cf. A052170 (unlabeled analog), A104209, A052171.

Programs

  • Maple
    seq(sum(binomial(m*(m-1)+n-1,n)/2^(m+1),m=0..infinity),n=0..10);
    # alternate program
    A121137:= n -> add(add(binomial(m, q)*(-1)^(m-q)*binomial(n+q*(q-1)-1, n), q=0..m), m=0..2*n):
    seq(A121137(n), n=0..20); # Marko Riedel, Jan 26 2025

Formula

a(n) = Sum_{m>=0} binomial(m*(m-1)+n-1,n)/2^(m+1).
a(n) = Sum_{m=0..2n} Sum_{q=0..m} binomial(m,q)*(-1)^(m-q)*binomial(n+q*(q-1)-1,n). - Marko Riedel, Jan 26 2025

A364088 Number of directed multigraphs with loops containing n edges and an infinite number of vertices modulo isomorphism and reversal of all edge directions.

Original entry on oeis.org

1, 2, 9, 37, 186, 985, 5953, 38689, 271492, 2016845, 15767277, 128792803, 1094819196, 9652396448, 88040449618, 829019941267, 8044691126159, 80322444793338, 824036583310711, 8675576699596604, 93627696274152013
Offset: 0

Views

Author

Saibal Mitra, Jul 04 2023

Keywords

Crossrefs

Cf. A052171 (without identifying graphs obtained from each other by reversal of all edge directions).
Showing 1-8 of 8 results.