cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 82 results. Next

A068593 Erroneous version of A007717.

Original entry on oeis.org

2, 7, 23, 78, 274, 1002, 3756, 14682, 59445, 249595
Offset: 1

Views

Author

Keywords

References

  • Huaien Li and David C. Torney, Enumerations of Multigraphs, 2002.

A001710 Order of alternating group A_n, or number of even permutations of n letters.

Original entry on oeis.org

1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
Offset: 0

Views

Author

Keywords

Comments

For n >= 3, a(n-1) is also the number of ways that a 3-cycle in the symmetric group S_n can be written as a product of 2 long cycles (of length n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 14 2001
a(n) is the number of Hamiltonian circuit masks for an n X n adjacency matrix of an undirected graph. - Chad Brewbaker, Jan 31 2003
a(n-1) is the number of necklaces one can make with n distinct beads: n! bead permutations, divide by two to represent flipping the necklace over, divide by n to represent rotating the necklace. Related to Stirling numbers of the first kind, Stirling cycles. - Chad Brewbaker, Jan 31 2003
Number of increasing runs in all permutations of [n-1] (n>=2). Example: a(4)=12 because we have 12 increasing runs in all the permutations of [3] (shown in parentheses): (123), (13)(2), (3)(12), (2)(13), (23)(1), (3)(2)(1). - Emeric Deutsch, Aug 28 2004
Minimum permanent over all n X n (0,1)-matrices with exactly n/2 zeros. - Simone Severini, Oct 15 2004
The number of permutations of 1..n that have 2 following 1 for n >= 1 is 0, 1, 3, 12, 60, 360, 2520, 20160, ... . - Jon Perry, Sep 20 2008
Starting (1, 3, 12, 60, ...) = binomial transform of A000153: (1, 2, 7, 32, 181, ...). - Gary W. Adamson, Dec 25 2008
First column of A092582. - Mats Granvik, Feb 08 2009
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=3) ~ exp(-x)/x*(1 - 3/x + 12/x^2 - 60/x^3 + 360/x^4 - 2520/x^5 + 20160/x^6 - 81440/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
For n>1: a(n) = A173333(n,2). - Reinhard Zumkeller, Feb 19 2010
Starting (1, 3, 12, 60, ...) = eigensequence of triangle A002260, (a triangle with k terms of (1,2,3,...) in each row given k=1,2,3,...). Example: a(6) = 360, generated from (1, 2, 3, 4, 5) dot (1, 1, 3, 12, 60) = (1 + 2 + 9 + 48 + 300). - Gary W. Adamson, Aug 02 2010
For n>=2: a(n) is the number of connected 2-regular labeled graphs on (n+1) nodes (Cf. A001205). - Geoffrey Critzer, Feb 16 2011.
The Fi1 and Fi2 triangle sums of A094638 are given by the terms of this sequence (n>=1). For the definition of these triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011
Also [1, 1] together with the row sums of triangle A162608. - Omar E. Pol, Mar 09 2012
a(n-1) is, for n>=2, also the number of necklaces with n beads (only C_n symmetry, no turnover) with n-1 distinct colors and signature c[.]^2 c[.]^(n-2). This means that two beads have the same color, and for n=2 the second factor is omitted. Say, cyclic(c[1]c[1]c[2]c[3]..c[n-1]), in short 1123...(n-1), taken cyclically. E.g., n=2: 11, n=3: 112, n=4: 1123, 1132, 1213, n=5: 11234, 11243, 11324, 11342, 11423, 11432, 12134, 12143, 13124, 13142, 14123, 14132. See the next-to-last entry in line n>=2 of the representative necklace partition array A212359. - Wolfdieter Lang, Jun 26 2012
For m >= 3, a(m-1) is the number of distinct Hamiltonian circuits in a complete simple graph with m vertices. See also A001286. - Stanislav Sykora, May 10 2014
In factorial base (A007623) these numbers have a simple pattern: 1, 1, 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000, 5500000000, 60000000000, 660000000000, 7000000000000, 77000000000000, 800000000000000, 8800000000000000, 90000000000000000, 990000000000000000, etc. See also the formula based on this observation, given below. - Antti Karttunen, Dec 19 2015
Also (by definition) the independence number of the n-transposition graph. - Eric W. Weisstein, May 21 2017
Number of permutations of n letters containing an even number of even cycles. - Michael Somos, Jul 11 2018
Equivalent to Brewbaker's and Sykora's comments, a(n - 1) is the number of undirected cycles covering n labeled vertices, hence the logarithmic transform of A002135. - Gus Wiseman, Oct 20 2018
For n >= 2 and a set of n distinct leaf labels, a(n) is the number of binary, rooted, leaf-labeled tree topologies that have a caterpillar shape (column k=1 of A306364). - Noah A Rosenberg, Feb 11 2019
Also the clique covering number of the n-Bruhat graph. - Eric W. Weisstein, Apr 19 2019
a(n) is the number of lattices of the form [s,w] in the weak order on S_n, for a fixed simple reflection s. - Bridget Tenner, Jan 16 2020
For n > 3, a(n) = p_1^e_1*...*p_m^e_m, where p_1 = 2 and e_m = 1. There exists p_1^x where x <= e_1 such that p_1^x*p_m^e_m is a primitive Zumkeller number (A180332) and p_1^e_1*p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 3, a(n) = p_1^e_1*p_m^e_m*r, where r is relatively prime to p_1*p_m, is also a Zumkeller number. - Ivan N. Ianakiev, Mar 11 2020
For n>1, a(n) is the number of permutations of [n] that have 1 and 2 as cycle-mates, that is, 1 and 2 are contained in the same cycle of a cyclic representation of permutations of [n]. For example, a(4) counts the 12 permutations with 1 and 2 as cycle-mates, namely, (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2 3) (4), (1 3 2) (4), (1 2 4 )(3), (1 4 2)(3), (1 2)(3 4), and (1 2)(3)(4). Since a(n+2)=row sums of A162608, our result readily follows. - Dennis P. Walsh, May 28 2020

Examples

			G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
		

References

  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n+1)= A046089(n, 1), n >= 1 (first column of triangle), A161739 (q(n) sequence).
Bisections are A002674 and A085990 (essentially).
Row 3 of A265609 (essentially).
Row sums of A307429.

Programs

  • Magma
    [1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
    
  • Maple
    seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
  • Mathematica
    a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0]
    a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
    Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *)
    Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
  • PARI
    {a(n) = if( n<2, n>=0, n!/2)};
    
  • PARI
    a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
    
  • PARI
    A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
    
  • Python
    from math import factorial
    def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
    
  • SageMath
    def A001710(n): return (factorial(n) +int(n<2))//2
    [A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
  • Scheme
    ;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization
    (definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1))))))
    ;; Antti Karttunen, Dec 19 2015
    

Formula

a(n) = numerator(n!/2) and A141044(n) = denominator(n!/2).
D-finite with recurrence: a(0) = a(1) = a(2) = 1; a(n) = n*a(n-1) for n>2. - Chad Brewbaker, Jan 31 2003 [Corrected by N. J. A. Sloane, Jul 25 2008]
a(0) = 0, a(1) = 1; a(n) = Sum_{k=1..n-1} k*a(k). - Amarnath Murthy, Oct 29 2002
Stirling transform of a(n+1) = [1, 3, 12, 160, ...] is A083410(n) = [1, 4, 22, 154, ...]. - Michael Somos, Mar 04 2004
First Eulerian transform of A000027. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
From Paul Barry, Apr 18 2005: (Start)
a(n) = 0^n + Sum_{k=0..n} (-1)^(n-k-1)*T(n-1, k)*cos(Pi*(n-k-1)/2)^2.
T(n,k) = abs(A008276(n, k)). (End)
E.g.f.: (2 - x^2)/(2 - 2*x).
E.g.f. of a(n+2), n>=0, is 1/(1-x)^3.
E.g.f.: 1 + sinh(log(1/(1-x))). - Geoffrey Critzer, Dec 12 2010
a(n+1) = (-1)^n * A136656(n,1), n>=1.
a(n) = n!/2 for n>=2 (proof from the e.g.f). - Wolfdieter Lang, Apr 30 2010
a(n) = (n-2)! * t(n-1), n>1, where t(n) is the n-th triangular number (A000217). - Gary Detlefs, May 21 2010
a(n) = ( A000254(n) - 2* A001711(n-3) )/3, n>2. - Gary Detlefs, May 24 2010
O.g.f.: 1 + x*Sum_{n>=0} n^n*x^n/(1 + n*x)^n. - Paul D. Hanna, Sep 13 2011
a(n) = if n < 2 then 1, otherwise Pochhammer(n,n)/binomial(2*n,n). - Peter Luschny, Nov 07 2011
a(n) = Sum_{k=0..floor(n/2)} s(n,n-2*k) where s(n,k) are Stirling number of the first kind, A048994. - Mircea Merca, Apr 07 2012
a(n-1), n>=3, is M_1([2,1^(n-2)])/n = (n-1)!/2, with the M_1 multinomial numbers for the given n-1 part partition of n. See the second to last entry in line n>=3 of A036038, and the above necklace comment by W. Lang. - Wolfdieter Lang, Jun 26 2012
G.f.: A(x) = 1 + x + x^2/(G(0)-2*x) where G(k) = 1 - (k+1)*x/(1 - x*(k+3)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012.
G.f.: 1 + x + (Q(0)-1)*x^2/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+2)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + (x*Q(x)-x^2)/(2*(sqrt(x)+x)), where Q(x) = Sum_{n>=0} (n+1)!*x^n*sqrt(x)*(sqrt(x) + x*(n+2)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x/2 + (Q(0)-1)*x/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+1)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: 1+x + x^2*W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
From Antti Karttunen, Dec 19 2015: (Start)
a(0)=a(1)=1; after which, for even n: a(n) = (n/2) * (n-1)!, and for odd n: a(n) = (n-1)/2 * ((n-1)! + (n-2)!). [The formula was empirically found after viewing these numbers in factorial base, A007623, and is easily proved by considering formulas from Lang (Apr 30 2010) and Detlefs (May 21 2010) shown above.]
For n >= 1, a(2*n+1) = a(2*n) + A153880(a(2*n)). [Follows from above.] (End)
Inverse Stirling transform of a(n) is (-1)^(n-1)*A009566(n). - Anton Zakharov, Aug 07 2016
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/exp(n). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A006595(n-1)*n/A000124(n) for n>=2. - Anton Zakharov, Aug 23 2016
a(n) = A001563(n-1) - A001286(n-1) for n>=2. - Anton Zakharov, Sep 23 2016
From Peter Bala, May 24 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (x - 1)*A(x) + 1 - x^2 = 0.
G.f.: A(x) = 1 + x + x^2/(1 - 3*x/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - ... - (n + 2)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1 + x + x^2/(1 - 2*x - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-2)) / 2 = x - 3*x^2/2! + 12*x^3/3! - ..., an e.g.f. for the signed sequence here (n!/2!), ignoring the first two terms, is the compositional inverse of G(x) = (1 - 2*x)^(-1/2) - 1 = x + 3*x^2/2! + 15*x^3/3! + ..., an e.g.f. for A001147. Cf. A094638. H(x) is the e.g.f. for the sequence (-1)^m * m!/2 for m = 2,3,4,... . Cf. A001715 for n!/3! and A001720 for n!/4!. Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*(e-1).
Sum_{n>=0} (-1)^n/a(n) = 2/e. (End)

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
Further terms from Simone Severini, Oct 15 2004

A316980 Number of non-isomorphic strict multiset partitions of weight n.

Original entry on oeis.org

1, 1, 3, 8, 23, 63, 197, 588, 1892, 6140, 20734, 71472, 254090, 923900, 3446572, 13149295, 51316445, 204556612, 832467052, 3455533022, 14621598811, 63023667027, 276559371189, 1234802595648, 5606647482646, 25875459311317, 121324797470067, 577692044073205
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of nonnegative integer n X n matrices with sum of elements equal to n, under row and column permutations, with no equal rows (or alternatively, with no equal columns).
Also the number of non-isomorphic multiset partitions of weight n with no equivalent vertices. In a multiset partition, two vertices are equivalent if in every block the multiplicity of the first is equal to the multiplicity of the second.

Examples

			Non-isomorphic representatives of the a(3) = 8 multiset partitions with no equivalent vertices (first column) and with no equal blocks (second column):
      (111) <-> (111)
      (122) <-> (1)(11)
    (1)(11) <-> (122)
    (1)(22) <-> (1)(22)
    (2)(12) <-> (2)(12)
  (1)(1)(1) <-> (123)
  (1)(2)(2) <-> (1)(23)
  (1)(2)(3) <-> (1)(2)(3)
		

Crossrefs

Programs

  • PARI
    EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)}
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))}
    a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(p=sum(t=1, n, subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*polcoef(exp(p-subst(p,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 21 2023

Formula

Euler transform of A319557. - Gus Wiseman, Sep 23 2018

Extensions

a(7)-a(10) from Gus Wiseman, Sep 23 2018
Terms a(11) and beyond from Andrew Howroyd, Jan 19 2023

A316983 Number of non-isomorphic self-dual multiset partitions of weight n.

Original entry on oeis.org

1, 1, 2, 4, 9, 17, 36, 72, 155, 319, 677, 1429, 3094, 6648, 14518, 31796, 70491, 156818, 352371, 795952, 1813580, 4155367, 9594425, 22283566, 52122379, 122631874, 290432439, 691831161, 1658270316, 3997272089, 9692519896, 23631827354, 57943821449, 142834652193
Offset: 0

Views

Author

Gus Wiseman, Jul 18 2018

Keywords

Comments

Also the number of nonnegative integer square symmetric matrices with sum of elements equal to n, under row and column permutations.
The dual of a multiset partition has, for each vertex, one block consisting of the indices (or positions) of the blocks containing that vertex, counted with multiplicity.

Examples

			Non-isomorphic representatives of the a(4) = 9 self-dual multiset partitions:
  (1111),
  (1)(222), (2)(122), (11)(22), (12)(12),
  (1)(1)(23), (1)(2)(33), (1)(3)(23),
  (1)(2)(3)(4).
The a(4) = 9 square symmetric matrices:
. [4]
.
. [3 0]  [2 0]  [2 1]  [1 1]
. [0 1]  [0 2]  [1 0]  [1 1]
.
. [2 0 0]  [1 1 0]  [0 1 1]
. [0 1 0]  [1 0 0]  [1 0 0]
. [0 0 1]  [0 0 1]  [1 0 0]
.
. [1 0 0 0]
. [0 1 0 0]
. [0 0 1 0]
. [0 0 0 1]
		

Crossrefs

Row sums of A320796.
Main diagonal of A318805.

Programs

Extensions

Terms a(9) and beyond from Andrew Howroyd, Sep 03 2018

A000569 Number of graphical partitions of 2n.

Original entry on oeis.org

1, 2, 5, 9, 17, 31, 54, 90, 151, 244, 387, 607, 933, 1420, 2136, 3173, 4657, 6799, 9803, 14048, 19956, 28179, 39467, 54996, 76104, 104802, 143481, 195485, 264941, 357635, 480408, 642723, 856398, 1136715, 1503172, 1980785
Offset: 1

Views

Author

Keywords

Comments

A partition of n is a sequence p_1, ..., p_k for some k with p_1 >= p_2 >= ... >= p_k and p_1+...+p_k=n. A partition is graphical if it is the degree sequence of a simple graph (this requires that n be even). Some authors set a(0)=1 by convention.

Examples

			a(2)=2: the graphical partitions of 4 are 2+1+1 and 1+1+1+1, corresponding to the degree sequences of the graphs V and ||.
From _Gus Wiseman_, Oct 26 2018: (Start)
The a(1) = 1 through a(5) = 17 graphical partitions:
  (11)  (211)   (222)     (2222)      (3322)
        (1111)  (2211)    (3221)      (22222)
                (3111)    (22211)     (32221)
                (21111)   (32111)     (33211)
                (111111)  (41111)     (42211)
                          (221111)    (222211)
                          (311111)    (322111)
                          (2111111)   (331111)
                          (11111111)  (421111)
                                      (511111)
                                      (2221111)
                                      (3211111)
                                      (4111111)
                                      (22111111)
                                      (31111111)
                                      (211111111)
                                      (1111111111)
(End)
		

Crossrefs

Programs

  • Mathematica
    << MathWorld`Graphs`
    Table[Count[RealizeDegreeSequence /@ Partitions[n], _Graph], {n, 2, 20, 2}]
    (* second program *)
    prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]];
    strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n];
    Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]!={}&]],{n,6}] (* Gus Wiseman, Oct 26 2018 *)

A320655 Number of factorizations of n into semiprimes. Number of multiset partitions of the multiset of prime factors of n, into pairs.

Original entry on oeis.org

1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 2, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 0, 2, 0, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 1, 0, 2, 1, 1, 1, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 0, 2, 0, 0, 0, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Comments

The characteristic function of nonzero terms is A065043. - R. J. Mathar, Jan 18 2021

Examples

			The a(900) = 5 factorizations into semiprimes:
  900 = (4*9*25)
  900 = (4*15*15)
  900 = (6*6*25)
  900 = (6*10*15)
  900 = (9*10*10)
The a(900) = 5 multiset partitions into pairs:
  {{1,1},{2,2},{3,3}}
  {{1,1},{2,3},{2,3}}
  {{1,2},{1,2},{3,3}}
  {{1,2},{1,3},{2,3}}
  {{2,2},{1,3},{1,3}}
		

Crossrefs

Programs

  • Mathematica
    semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]];
    Table[Length[semfacs[n]],{n,100}]
  • PARI
    A320655(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A320655(n/d, d))); (s)); \\ Antti Karttunen, Dec 06 2020

Extensions

Data section extended up to 105 terms by Antti Karttunen, Dec 06 2020

A320656 Number of factorizations of n into squarefree semiprimes. Number of multiset partitions of the multiset of prime factors of n, into strict pairs.

Original entry on oeis.org

1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0
Offset: 1

Views

Author

Gus Wiseman, Oct 18 2018

Keywords

Examples

			The a(4620) = 6 factorizations into squarefree semiprimes:
  4620 = (6*10*77)
  4620 = (6*14*55)
  4620 = (6*22*35)
  4620 = (10*14*33)
  4620 = (10*21*22)
  4620 = (14*15*22)
The a(4620) = 6 multiset partitions into strict pairs:
  {{1,2},{1,3},{4,5}}
  {{1,2},{1,4},{3,5}}
  {{1,2},{1,5},{3,4}}
  {{1,3},{1,4},{2,5}}
  {{1,3},{2,4},{1,5}}
  {{1,4},{2,3},{1,5}}
The a(69300) = 10 factorizations into squarefree semiprimes:
  69300 = (6*6*35*55)
  69300 = (6*10*15*77)
  69300 = (6*10*21*55)
  69300 = (6*10*33*35)
  69300 = (6*14*15*55)
  69300 = (6*15*22*35)
  69300 = (10*10*21*33)
  69300 = (10*14*15*33)
  69300 = (10*15*21*22)
  69300 = (14*15*15*22)
The a(69300) = 10 multiset partitions into strict pairs:
  {{1,2},{1,2},{3,4},{3,5}}
  {{1,2},{1,3},{2,3},{4,5}}
  {{1,2},{1,3},{2,4},{3,5}}
  {{1,2},{1,3},{2,5},{3,4}}
  {{1,2},{1,4},{2,3},{3,5}}
  {{1,2},{2,3},{1,5},{3,4}}
  {{1,3},{1,3},{2,4},{2,5}}
  {{1,3},{1,4},{2,3},{2,5}}
  {{1,3},{2,3},{2,4},{1,5}}
  {{1,4},{2,3},{2,3},{1,5}}.
The a(210) = 3 factorizations into squarefree semiprimes: 210 = (6*35) = (10*21) = (14*15). - _Antti Karttunen_, Nov 02 2022
		

Crossrefs

Programs

  • Mathematica
    bepfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bepfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]];
    Table[Length[bepfacs[n]],{n,100}]
  • PARI
    A320656(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&issquarefree(d)&&2==bigomega(d), s += A320656(n/d, d))); (s)); \\ Antti Karttunen, Nov 02 2022

Formula

a(A002110(n)) = A123023(n). - Antti Karttunen, Nov 02 2022

Extensions

Data section extended up to a(120) and the secondary offset added by Antti Karttunen, Nov 02 2022

A320911 Numbers with an even number of prime factors (counted with multiplicity) that can be factored into squarefree semiprimes.

Original entry on oeis.org

1, 6, 10, 14, 15, 21, 22, 26, 33, 34, 35, 36, 38, 39, 46, 51, 55, 57, 58, 60, 62, 65, 69, 74, 77, 82, 84, 85, 86, 87, 90, 91, 93, 94, 95, 100, 106, 111, 115, 118, 119, 122, 123, 126, 129, 132, 133, 134, 140, 141, 142, 143, 145, 146, 150, 155, 156, 158, 159
Offset: 1

Views

Author

Gus Wiseman, Oct 23 2018

Keywords

Comments

A squarefree semiprime (A006881) is a product of any two distinct primes.
Also numbers with an even number x of prime factors, whose prime multiplicities do not exceed x/2.

Examples

			360 is in the sequence because it can be factored into squarefree semiprimes as (6*6*10).
4620 is in the sequence, and can be factored into squarefree semiprimes in 6 ways: (6*10*77), (6*14*55), (6*22*35), (10*14*33), (10*21*22), (14*15*22).
		

Crossrefs

Programs

  • Mathematica
    sqfsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfsemfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]];
    Select[Range[100],And[EvenQ[PrimeOmega[#]],sqfsemfacs[#]!={}]&]

A050535 Number of loopless multigraphs on infinite set of nodes with n edges.

Original entry on oeis.org

1, 1, 3, 8, 23, 66, 212, 686, 2389, 8682, 33160, 132277, 550835, 2384411, 10709827, 49782637, 238998910, 1182772364, 6023860266, 31525780044, 169316000494, 932078457785, 5253664040426, 30290320077851, 178480713438362, 1073918172017297
Offset: 0

Views

Author

Vladeta Jovovic, Dec 29 1999

Keywords

Comments

Also, a(n) is the number of n-rowed binary matrices with all row sums equal to 2, up to row and column permutation (see Jovovic's formula). Also, a(n) is the limit of A192517(m,n) as m grows. - Max Alekseyev, Oct 18 2017
Row sums of the triangle defined by the Multiset Transformation of A076864,
1 ;
0 1;
0 2 1;
0 5 2 1;
0 12 8 2 1;
0 33 22 8 2 1;
0 103 72 26 8 2 1;
0 333 229 87 26 8 2 1;
0 1183 782 295 92 26 8 2 1;
0 4442 2760 1036 315 92 26 8 2 1;
0 17576 10270 3735 1129 321 92 26 8 2 1;
0 72810 39770 13976 4117 1154 321 92 26 8 2 1;
0 314595 160713 54132 15547 4237 1161 321 92 26 8 2 1;
- R. J. Mathar, Jul 18 2017
Also the number of non-isomorphic set multipartitions (multisets of sets) of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018

Examples

			From _Gus Wiseman_, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(3) = 8 set multipartitions of {1, 1, 2, 2, 3, 3}:
  (123)(123)
  (1)(23)(123)
  (12)(13)(23)
  (1)(1)(23)(23)
  (1)(2)(3)(123)
  (1)(2)(13)(23)
  (1)(1)(2)(3)(23)
  (1)(1)(2)(2)(3)(3)
(End)
		

References

  • Frank Harary and Edgar M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 88, Eq. (4.1.18).

Crossrefs

Programs

Formula

a(n) = A192517(2*n,n) = A192517(m,n) for any m>=2*n. - Max Alekseyev, Oct 18 2017
Euler transform of A076864. - Andrew Howroyd, Oct 23 2019

Extensions

More terms from Sean A. Irvine, Oct 02 2011

A096373 Number of partitions of n such that the least part occurs exactly twice.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 3, 6, 5, 11, 11, 17, 20, 30, 33, 49, 56, 77, 92, 122, 143, 190, 225, 287, 344, 435, 516, 648, 770, 951, 1134, 1388, 1646, 2007, 2376, 2868, 3395, 4078, 4807, 5749, 6764, 8042, 9449, 11187, 13101, 15463, 18070, 21236, 24772, 29021, 33764
Offset: 1

Views

Author

Vladeta Jovovic, Jul 19 2004

Keywords

Comments

Also number of partitions of n such that the difference between the two largest distinct parts is 2 (it is assumed that 0 is a part in each partition). Example: a(6)=3 because we have [4,2], [3,1,1,1] and [2,2,2]. - Emeric Deutsch, Apr 08 2006
Number of partitions p of n+2 such that min(p) + (number of parts of p) is a part of p. - Clark Kimberling, Feb 27 2014
Number of partitions of n+1 such that the two smallest parts differ by one. - Giovanni Resta, Mar 07 2014
Also the number of integer partitions of n with an even number of parts that cannot be grouped into pairs of distinct parts. These are also integer partitions of n with an even number of parts whose greatest multiplicity is greater than half the number of parts. - Gus Wiseman, Oct 26 2018

Examples

			a(6)=3 because we have [4,1,1], [3,3] and [2,2,1,1].
G.f. = x^2 + 2*x^4 + x^5 + 3*x^6 + 3*x^7 + 6*x^8 + 5*x^9 + 11*x^10 + 11*x^11 + ...
From _Gus Wiseman_, Oct 26 2018: (Start)
The a(2) = 1 through a(10) = 11 partitions where the least part occurs exactly twice (zero terms not shown):
  (11)  (22)   (311)  (33)    (322)   (44)     (522)    (55)
        (211)         (411)   (511)   (422)    (711)    (433)
                      (2211)  (3211)  (611)    (4311)   (622)
                                      (3311)   (5211)   (811)
                                      (4211)   (32211)  (3322)
                                      (22211)           (4411)
                                                        (5311)
                                                        (6211)
                                                        (33211)
                                                        (42211)
                                                        (222211)
The a(2) = 1 through a(10) = 11 partitions that cannot be grouped into pairs of distinct parts (zero terms not shown):
  (11) (22)   (2111) (33)     (2221)   (44)       (3222)     (55)
       (1111)        (3111)   (4111)   (2222)     (6111)     (3331)
                     (111111) (211111) (5111)     (321111)   (4222)
                                       (221111)   (411111)   (7111)
                                       (311111)   (21111111) (222211)
                                       (11111111)            (331111)
                                                             (421111)
                                                             (511111)
                                                             (22111111)
                                                             (31111111)
                                                             (1111111111)
(End)
		

Crossrefs

Programs

  • Maple
    g:=sum(x^(2*k)/product(1-x^j,j=k+1..80),k=1..70): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..51); # Emeric Deutsch, Apr 08 2006
  • Mathematica
    (* do first *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Block[{p = Partitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[ p[[k]], 3]; If[ q[[1]] != q[[3]] && q[[2]] == q[[3]], c++ ]; k++ ]; c]; Table[ f[n], {n, 51}] (* Robert G. Wilson v, Jul 23 2004 *)
    Table[Count[IntegerPartitions[n+2], p_ /; MemberQ[p, Length[p] + Min[p]]], {n, 50}] (* Clark Kimberling, Feb 27 2014 *)
    p[n_, m_] := If[m == n, 1, If[m > n, 0, p[n, m] = Sum[p[n-m, k], {k, m, n}]]];
    a[n_] := Sum[p[n+1-k, k+1], {k, n/2}]; Array[a, 100] (* Giovanni Resta, Mar 07 2014 *)
  • PARI
    {q=sum(m=1,100,x^(2*m)/prod(i=m+1,100,1-x^i,1+O(x^60)),1+O(x^60));for(n=1,51,print1(polcoeff(q,n),","))} \\ Klaus Brockhaus, Jul 21 2004
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( ( 1 - (1 - x - x^2) / eta(x + x^4 * O(x^n)) ) * (1 - x) / x^3, n))} /* Michael Somos, Feb 28 2014 */

Formula

G.f.: Sum_{m>0} (x^(2*m) / Product_{i>m} (1-x^i)). More generally, g.f. for number of partitions of n such that the least part occurs exactly k times is Sum_{m>0} (x^(k*m)/Product_{i>m} (1-x^i)).
G.f.: Sum_{k>=1} (x^(2*k-2)*(1-x^(k-1))/Product_{j=1..k} (1-x^j)). - Emeric Deutsch, Apr 08 2006
a(n) = -p(n+3)+2*p(n+2)-p(n), p(n)=A000041(n). - Mircea Merca, Jul 10 2013
a(n) ~ exp(Pi*sqrt(2*n/3)) * Pi / (12*sqrt(2)*n^(3/2)). - Vaclav Kotesovec, Jun 02 2018

Extensions

Edited and extended by Robert G. Wilson v and Klaus Brockhaus, Jul 21 2004
Showing 1-10 of 82 results. Next