A068593 Erroneous version of A007717.
2, 7, 23, 78, 274, 1002, 3756, 14682, 59445, 249595
Offset: 1
Keywords
References
- Huaien Li and David C. Torney, Enumerations of Multigraphs, 2002.
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
[1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0] a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *) a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *) a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *) Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *) Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
{a(n) = if( n<2, n>=0, n!/2)};
a(n)=polcoeff(1+x*sum(m=0,n,m^m*x^m/(1+m*x+x*O(x^n))^m),n) \\ Paul D. Hanna
A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
from math import factorial def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
def A001710(n): return (factorial(n) +int(n<2))//2 [A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
;; Using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization (definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1)))))) ;; Antti Karttunen, Dec 19 2015
Non-isomorphic representatives of the a(3) = 8 multiset partitions with no equivalent vertices (first column) and with no equal blocks (second column): (111) <-> (111) (122) <-> (1)(11) (1)(11) <-> (122) (1)(22) <-> (1)(22) (2)(12) <-> (2)(12) (1)(1)(1) <-> (123) (1)(2)(2) <-> (1)(23) (1)(2)(3) <-> (1)(2)(3)
EulerT(v)={Vec(exp(x*Ser(dirmul(v, vector(#v, n, 1/n))))-1, -#v)} permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m} K(q, t, k)={EulerT(Vec(sum(j=1, #q, my(g=gcd(t, q[j])); g*x^(q[j]/g)) + O(x*x^k), -k))} a(n)={if(n==0, 1, my(s=0); forpart(q=n, my(p=sum(t=1, n, subst(x*Ser(K(q, t, n\t))/t, x, x^t))); s+=permcount(q)*polcoef(exp(p-subst(p,x,x^2)), n)); s/n!)} \\ Andrew Howroyd, Jan 21 2023
Non-isomorphic representatives of the a(4) = 9 self-dual multiset partitions: (1111), (1)(222), (2)(122), (11)(22), (12)(12), (1)(1)(23), (1)(2)(33), (1)(3)(23), (1)(2)(3)(4). The a(4) = 9 square symmetric matrices: . [4] . . [3 0] [2 0] [2 1] [1 1] . [0 1] [0 2] [1 0] [1 1] . . [2 0 0] [1 1 0] [0 1 1] . [0 1 0] [1 0 0] [1 0 0] . [0 0 1] [0 0 1] [1 0 0] . . [1 0 0 0] . [0 1 0 0] . [0 0 1 0] . [0 0 0 1]
vector(25, n, n--; T(n,n)) \\ T(n,k) defined in A318805. - Andrew Howroyd, Jan 16 2024
a(2)=2: the graphical partitions of 4 are 2+1+1 and 1+1+1+1, corresponding to the degree sequences of the graphs V and ||. From _Gus Wiseman_, Oct 26 2018: (Start) The a(1) = 1 through a(5) = 17 graphical partitions: (11) (211) (222) (2222) (3322) (1111) (2211) (3221) (22222) (3111) (22211) (32221) (21111) (32111) (33211) (111111) (41111) (42211) (221111) (222211) (311111) (322111) (2111111) (331111) (11111111) (421111) (511111) (2221111) (3211111) (4111111) (22111111) (31111111) (211111111) (1111111111) (End)
<< MathWorld`Graphs` Table[Count[RealizeDegreeSequence /@ Partitions[n], _Graph], {n, 2, 20, 2}] (* second program *) prptns[m_]:=Union[Sort/@If[Length[m]==0,{{}},Join@@Table[Prepend[#,m[[ipr]]]&/@prptns[Delete[m,List/@ipr]],{ipr,Select[Prepend[{#},1]&/@Select[Range[2,Length[m]],m[[#]]>m[[#-1]]&],UnsameQ@@m[[#]]&]}]]]; strnorm[n_]:=Flatten[MapIndexed[Table[#2,{#1}]&,#]]&/@IntegerPartitions[n]; Table[Length[Select[strnorm[2*n],Select[prptns[#],UnsameQ@@#&]!={}&]],{n,6}] (* Gus Wiseman, Oct 26 2018 *)
The a(900) = 5 factorizations into semiprimes: 900 = (4*9*25) 900 = (4*15*15) 900 = (6*6*25) 900 = (6*10*15) 900 = (9*10*10) The a(900) = 5 multiset partitions into pairs: {{1,1},{2,2},{3,3}} {{1,1},{2,3},{2,3}} {{1,2},{1,2},{3,3}} {{1,2},{1,3},{2,3}} {{2,2},{1,3},{1,3}}
semfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[semfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],PrimeOmega[#]==2&]}]]; Table[Length[semfacs[n]],{n,100}]
A320655(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((2==bigomega(d)&&(d<=m)), s += A320655(n/d, d))); (s)); \\ Antti Karttunen, Dec 06 2020
The a(4620) = 6 factorizations into squarefree semiprimes: 4620 = (6*10*77) 4620 = (6*14*55) 4620 = (6*22*35) 4620 = (10*14*33) 4620 = (10*21*22) 4620 = (14*15*22) The a(4620) = 6 multiset partitions into strict pairs: {{1,2},{1,3},{4,5}} {{1,2},{1,4},{3,5}} {{1,2},{1,5},{3,4}} {{1,3},{1,4},{2,5}} {{1,3},{2,4},{1,5}} {{1,4},{2,3},{1,5}} The a(69300) = 10 factorizations into squarefree semiprimes: 69300 = (6*6*35*55) 69300 = (6*10*15*77) 69300 = (6*10*21*55) 69300 = (6*10*33*35) 69300 = (6*14*15*55) 69300 = (6*15*22*35) 69300 = (10*10*21*33) 69300 = (10*14*15*33) 69300 = (10*15*21*22) 69300 = (14*15*15*22) The a(69300) = 10 multiset partitions into strict pairs: {{1,2},{1,2},{3,4},{3,5}} {{1,2},{1,3},{2,3},{4,5}} {{1,2},{1,3},{2,4},{3,5}} {{1,2},{1,3},{2,5},{3,4}} {{1,2},{1,4},{2,3},{3,5}} {{1,2},{2,3},{1,5},{3,4}} {{1,3},{1,3},{2,4},{2,5}} {{1,3},{1,4},{2,3},{2,5}} {{1,3},{2,3},{2,4},{1,5}} {{1,4},{2,3},{2,3},{1,5}}. The a(210) = 3 factorizations into squarefree semiprimes: 210 = (6*35) = (10*21) = (14*15). - _Antti Karttunen_, Nov 02 2022
bepfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[bepfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],SquareFreeQ[#]&&PrimeOmega[#]==2&]}]]; Table[Length[bepfacs[n]],{n,100}]
A320656(n, m=n) = if(1==n, 1, my(s=0); fordiv(n, d, if((d>1)&&(d<=m)&&issquarefree(d)&&2==bigomega(d), s += A320656(n/d, d))); (s)); \\ Antti Karttunen, Nov 02 2022
360 is in the sequence because it can be factored into squarefree semiprimes as (6*6*10). 4620 is in the sequence, and can be factored into squarefree semiprimes in 6 ways: (6*10*77), (6*14*55), (6*22*35), (10*14*33), (10*21*22), (14*15*22).
sqfsemfacs[n_]:=If[n<=1,{{}},Join@@Table[Map[Prepend[#,d]&,Select[sqfsemfacs[n/d],Min@@#>=d&]],{d,Select[Rest[Divisors[n]],And[SquareFreeQ[#],PrimeOmega[#]==2]&]}]]; Select[Range[100],And[EvenQ[PrimeOmega[#]],sqfsemfacs[#]!={}]&]
From _Gus Wiseman_, Jul 18 2018: (Start) Non-isomorphic representatives of the a(3) = 8 set multipartitions of {1, 1, 2, 2, 3, 3}: (123)(123) (1)(23)(123) (12)(13)(23) (1)(1)(23)(23) (1)(2)(3)(123) (1)(2)(13)(23) (1)(1)(2)(3)(23) (1)(1)(2)(2)(3)(3) (End)
seq[n_] := G[2n, x+O[x]^n, {}] // CoefficientList[#, x]&; seq[15] (* Jean-François Alcover, Dec 02 2020, using Andrew Howroyd's code for G in A339065 *)
a(6)=3 because we have [4,1,1], [3,3] and [2,2,1,1]. G.f. = x^2 + 2*x^4 + x^5 + 3*x^6 + 3*x^7 + 6*x^8 + 5*x^9 + 11*x^10 + 11*x^11 + ... From _Gus Wiseman_, Oct 26 2018: (Start) The a(2) = 1 through a(10) = 11 partitions where the least part occurs exactly twice (zero terms not shown): (11) (22) (311) (33) (322) (44) (522) (55) (211) (411) (511) (422) (711) (433) (2211) (3211) (611) (4311) (622) (3311) (5211) (811) (4211) (32211) (3322) (22211) (4411) (5311) (6211) (33211) (42211) (222211) The a(2) = 1 through a(10) = 11 partitions that cannot be grouped into pairs of distinct parts (zero terms not shown): (11) (22) (2111) (33) (2221) (44) (3222) (55) (1111) (3111) (4111) (2222) (6111) (3331) (111111) (211111) (5111) (321111) (4222) (221111) (411111) (7111) (311111) (21111111) (222211) (11111111) (331111) (421111) (511111) (22111111) (31111111) (1111111111) (End)
g:=sum(x^(2*k)/product(1-x^j,j=k+1..80),k=1..70): gser:=series(g,x=0,55): seq(coeff(gser,x,n),n=1..51); # Emeric Deutsch, Apr 08 2006
(* do first *) Needs["DiscreteMath`Combinatorica`"] (* then *) f[n_] := Block[{p = Partitions[n], l = PartitionsP[n], c = 0, k = 1}, While[k < l + 1, q = PadLeft[ p[[k]], 3]; If[ q[[1]] != q[[3]] && q[[2]] == q[[3]], c++ ]; k++ ]; c]; Table[ f[n], {n, 51}] (* Robert G. Wilson v, Jul 23 2004 *) Table[Count[IntegerPartitions[n+2], p_ /; MemberQ[p, Length[p] + Min[p]]], {n, 50}] (* Clark Kimberling, Feb 27 2014 *) p[n_, m_] := If[m == n, 1, If[m > n, 0, p[n, m] = Sum[p[n-m, k], {k, m, n}]]]; a[n_] := Sum[p[n+1-k, k+1], {k, n/2}]; Array[a, 100] (* Giovanni Resta, Mar 07 2014 *)
{q=sum(m=1,100,x^(2*m)/prod(i=m+1,100,1-x^i,1+O(x^60)),1+O(x^60));for(n=1,51,print1(polcoeff(q,n),","))} \\ Klaus Brockhaus, Jul 21 2004
{a(n) = if( n<0, 0, polcoeff( ( 1 - (1 - x - x^2) / eta(x + x^4 * O(x^n)) ) * (1 - x) / x^3, n))} /* Michael Somos, Feb 28 2014 */
Comments