A173217
G.f.: A(x) = Sum_{n>=0} (1 + x)^(n^2) / 2^(n+1).
Original entry on oeis.org
1, 3, 36, 744, 21606, 807912, 36948912, 1997801520, 124666314300, 8817945612300, 697162848757056, 60925366551278592, 5831682410241684192, 606763511537812563648, 68184018356901256320192, 8229830886505821175612416, 1061871008421711265790015880, 145851902823090076435152800208, 21247730059665104564252809209792
Offset: 0
-
Table[Sum[Binomial[k^2, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -2*j, 0]/2, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
-
{a(n)=local(A=sum(m=0,n^2+100,(1+x +O(x^(n+2)))^(m^2)/2^(m+1)));round(polcoeff(A,n))}
-
/* Continued fraction expression: */
{a(n) = my(CF=1, q = 1+x +x*O(x^n)); for(k=0, n, CF = 1/(2 - q^(4*n-4*k+1)/(1 - q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 18 2018
A052171
Number of directed multigraphs with loops on an infinite set of nodes containing a total of n arcs.
Original entry on oeis.org
1, 2, 11, 52, 296, 1724, 11060, 74527, 533046, 3999187, 31412182, 257150093, 2188063401, 19299062896, 176059781439, 1657961491087, 16089088019098, 160643776819423, 1648068916722737, 17351137043998280, 187255329043638437, 2069426416836401375, 23397468305569068113, 270406562951254606048, 3191908298072118225550, 38454691427657997701136
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Banglei Guan, Ji Zhao, and Laurent Kneip, Six-Point Method for Multi-Camera Systems with Reduced Solution Space, arXiv:2402.18066 [cs.CV], 2024. See p. 10.
- J.-C. Novelli, J.-Y. Thibon and N. M. Thiery, Algèbres de Hopf de graphes, C.R. Acad. Sci. Paris (Comptes Rendus Mathématique), 339 (2004), 607-610.
- Sanjaye Ramgoolam, Permutation Invariant Gaussian Matrix Models, arXiv:1809.07559 [hep-th], 2018.
A122420
Number of labeled directed multigraphs with n arcs and with no vertex of indegree 0.
Original entry on oeis.org
1, 0, 1, 10, 120, 1778, 31685, 661940, 15882128, 430607370, 13022755068, 434697574538, 15875944361864, 629756003982336, 26963278837704185, 1239382820431888898, 60875147436141987437, 3181961834442383306068
Offset: 0
-
A122418 := proc(n) option remember ; add( combinat[stirling2](n,k)*(k-1)^n*k!,k=0..n) ; end: A122420 := proc(n) option remember ; add( abs(combinat[stirling1](n,k))*A122418(k),k=0..n)/n! ; end: for n from 0 to 30 do printf("%d, ",A122420(n)) ; od ; # R. J. Mathar, May 18 2007
-
Table[1/n!*Sum[Abs[StirlingS1[n,k]]*Sum[(m-1)^k*m!*StirlingS2[k,m],{m,0,k}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 07 2014 *)
A121316
Unlabeled version of A055203: number of different relations between n intervals (of nonzero length) on a line, up to permutation of intervals.
Original entry on oeis.org
1, 1, 7, 75, 1105, 20821, 478439, 12977815, 405909913, 14382249193, 569377926495, 24908595049347, 1193272108866953, 62128556769033261, 3493232664307133871, 210943871609662171055, 13615857409567572389361, 935523911378273899335537
Offset: 0
-
seq(sum(binomial(k*(k-1)/2+n-1,n)/2^(k+1),k=0..infinity),n=0..20);
with(combinat): A121316:=proc(n) return (1/n!)*add(abs(stirling1(n,k))*A055203(k),k=0..n): end: seq(A121316(n),n=0..20); # Nathaniel Johnston, Apr 28 2011
-
Table[Sum[Binomial[k*(k-1)/2+n-1,n]/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Mar 15 2014 *)
-
a(n) = {sum(j=0, 2*n, binomial(binomial(j,2)+n-1, n) * sum(i=j, 2*n, (-1)^(i-j)*binomial(i,j)))} \\ Andrew Howroyd, Feb 09 2020
A301311
G.f.: Sum_{n>=0} 2^n * (1-x)^(-n^2) / 3^(n+1).
Original entry on oeis.org
1, 10, 370, 22570, 1924270, 210821290, 28223418010, 4464779024650, 814901395935550, 168556843188104050, 38965275697707264970, 9955529477371346769010, 2785811940289987110605590, 847316256984037311888049090, 278329013908504193489288029090, 98197864581209379156337136722690, 37034491818759647215732974465421990, 14868275488492647637389364332301206490
Offset: 0
G.f.: A(x) = 1 + 10*x + 370*x^2 + 22570*x^3 + 1924270*x^4 + 210821290*x^5 + 28223418010*x^6 + 4464779024650*x^7 + 814901395935550*x^8 + ...
such that
A(x) = 1/3 + 2/(1-x)/3^2 + 2^2/(1-x)^4/3^3 + 2^3/(1-x)^9/3^4 + 2^4/(1-x)^16/3^5 + 2^5/(1-x)^25/3^6 + 2^6/(1-x)^36/3^7 + 2^7/(1-x)^49/3^8 + 2^8/(1-x)^64/3^9 + ...
-
/* Continued fraction expression: */
{a(n) = my(CF=1, q = 1/(1-x +x*O(x^n))); for(k=0, n, CF = 1/(3 - 2*q^(4*n-4*k+1)/(1 - 2*q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
for(n=0, 30, print1(a(n), ", "))
A121886
a(n) = (1/n!)* Sum_{k=0..n} |Stirling1(n,k)|*A122399(k).
Original entry on oeis.org
1, 1, 5, 40, 444, 6324, 110023, 2261576, 53632424, 1441341350, 43290170494, 1437020742408, 52243864528990, 2064488610832106, 88106523694973953, 4038627301344466648, 197888243609535940091, 10321811633042512528240
Offset: 0
G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 444*x^4 + 6324*x^5 +...
where
A(x) = 1 + (1/(1-x) - 1) + (1/(1-x)^2 - 1)^2 + (1/(1-x)^3 - 1)^3 + ...
Also,
A(x) = 1/2 + (1-x)/(1 + (1-x))^2 + (1-x)^2/(1 + (1-x)^2)^3 + + (1-x)^3/(1 + (1-x)^3)^4 + (1-x)^4/(1 + (1-x)^4)^5 + ...
-
Flatten[{1,Table[1/n!* Sum[Abs[StirlingS1[n,k]]*Sum[m^k*m!*StirlingS2[k, m], {m, 1, k}],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 07 2014 *)
-
{a(n)=polcoeff(sum(m=0,n,(1/(1-x+x*O(x^n))^m-1)^m),n)}
A120945
Triangle T(n,k) of number of labeled directed multigraphs (with loops), without isolated vertices, with n arrows and k vertices (n = 1,2,.., k = 1..2*n).
Original entry on oeis.org
1, 2, 1, 8, 18, 12, 1, 18, 108, 272, 300, 120, 1, 33, 393, 2102, 5700, 8160, 5880, 1680, 1, 54, 1122, 10688, 53550, 153132, 258720, 255360, 136080, 30240, 1, 82, 2754, 42752, 351650, 1688892, 5025832, 9540272, 11566800, 8668800, 3659040, 665280
Offset: 1
[1,2], [1,8,18,12], [1,18,108,272,300,120], [1,33,393,2102,5700,8160,5880,1680], ....
A121063
Number of labeled directed multigraphs with n arcs for which every vertex has in-degree at least one and out-degree at least one.
Original entry on oeis.org
1, 0, 1, 4, 27, 246, 2783, 37424, 582153, 10276452, 202894801, 4429522252, 105943672079, 2754788353526, 77371821493913, 2334279549290960, 75286455363538607, 2584971423426768872, 94138234184851584599, 3624294240897948371036, 147080227272202880297669
Offset: 0
-
n:=20: t:=taylor(sum(sum((-1)^(s-k)*binomial(s,k)*((1+x/(1-x))^(k-1)-1)^k*((1+x/(1-x))^k-1)^(s-k),k=0..s),s=0..n),x,n+1): seq(coeff(t,x,s),s=0..n); # Nathaniel Johnston, Apr 28 2011
A121137
Number of labeled directed multigraphs (without loops) with n arcs and no vertex of degree 0.
Original entry on oeis.org
1, 2, 27, 572, 16787, 631362, 28980861, 1570956872, 98212870233, 6956704585554, 550626446263423, 48163137319172436, 4613554511554200251, 480324019903607680066, 54004504167811544647161, 6521368218660772789452944, 841771274136198763040518633
Offset: 0
-
seq(sum(binomial(m*(m-1)+n-1,n)/2^(m+1),m=0..infinity),n=0..10);
# alternate program
A121137:= n -> add(add(binomial(m, q)*(-1)^(m-q)*binomial(n+q*(q-1)-1, n), q=0..m), m=0..2*n):
seq(A121137(n), n=0..20); # Marko Riedel, Jan 26 2025
Showing 1-9 of 9 results.
Comments