cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A173217 G.f.: A(x) = Sum_{n>=0} (1 + x)^(n^2) / 2^(n+1).

Original entry on oeis.org

1, 3, 36, 744, 21606, 807912, 36948912, 1997801520, 124666314300, 8817945612300, 697162848757056, 60925366551278592, 5831682410241684192, 606763511537812563648, 68184018356901256320192, 8229830886505821175612416, 1061871008421711265790015880, 145851902823090076435152800208, 21247730059665104564252809209792
Offset: 0

Views

Author

Paul D. Hanna, Mar 05 2010

Keywords

Comments

Variant of A104209, which enumerates labeled directed multigraphs.
Number of labeled digraphs with n edges and no vertices of degree zero, in which loops are permitted but not duplicate edges. - David Bevan, Apr 22 2013

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k^2, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
    Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -2*j, 0]/2, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
  • PARI
    {a(n)=local(A=sum(m=0,n^2+100,(1+x +O(x^(n+2)))^(m^2)/2^(m+1)));round(polcoeff(A,n))}
    
  • PARI
    /* Continued fraction expression: */
    {a(n) = my(CF=1, q = 1+x +x*O(x^n)); for(k=0, n, CF = 1/(2 - q^(4*n-4*k+1)/(1 - q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
    for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 18 2018

Formula

G.f.: 1/(2 - q/(1 - q*(q^2-1)/(2 - q^5/(1 - q^3*(q^4-1)/(2 - q^9/(1 - q^5*(q^6-1)/(2 - q^13/(1 - q^7*(q^8-1)/(2 - ...))))))))) where q = (1+x), a continued fraction due to a partial elliptic theta function identity. - Paul D. Hanna, Mar 18 2018
G.f.: Sum_{n>=0} 1/2^(n+1) * (1+x)^n * Product_{k=1..n} (2 - (1+x)^(4*k-3)) / (2 - (1+x)^(4*k-1)), due to a q-series identity. - Paul D. Hanna, Mar 18 2018
a(n) ~ 2^(2*n - 1/2 - log(2)/8) * n^n / (exp(n) * log(2)^(2*n + 1)). - Vaclav Kotesovec, Mar 21 2018

A052171 Number of directed multigraphs with loops on an infinite set of nodes containing a total of n arcs.

Original entry on oeis.org

1, 2, 11, 52, 296, 1724, 11060, 74527, 533046, 3999187, 31412182, 257150093, 2188063401, 19299062896, 176059781439, 1657961491087, 16089088019098, 160643776819423, 1648068916722737, 17351137043998280, 187255329043638437, 2069426416836401375, 23397468305569068113, 270406562951254606048, 3191908298072118225550, 38454691427657997701136
Offset: 0

Views

Author

Vladeta Jovovic, Jan 26 2000

Keywords

Comments

Row sums of A136564, limiting values of A138107. - Benoit Jubin, May 13 2008
Euler transform of A137975. - M. F. Hasler, Jul 31 2017

Crossrefs

Cf. A104209. Cf. A137975 (connected).

Formula

a(n) = A138107(2*n,n). - Max Alekseyev, Oct 17 2017

Extensions

a(16)-a(25) from Max Alekseyev, Jun 21 2011

A122420 Number of labeled directed multigraphs with n arcs and with no vertex of indegree 0.

Original entry on oeis.org

1, 0, 1, 10, 120, 1778, 31685, 661940, 15882128, 430607370, 13022755068, 434697574538, 15875944361864, 629756003982336, 26963278837704185, 1239382820431888898, 60875147436141987437, 3181961834442383306068
Offset: 0

Views

Author

Vladeta Jovovic, Sep 03 2006

Keywords

Crossrefs

Cf. A104209.

Programs

  • Maple
    A122418 := proc(n) option remember ; add( combinat[stirling2](n,k)*(k-1)^n*k!,k=0..n) ; end: A122420 := proc(n) option remember ; add( abs(combinat[stirling1](n,k))*A122418(k),k=0..n)/n! ; end: for n from 0 to 30 do printf("%d, ",A122420(n)) ; od ; # R. J. Mathar, May 18 2007
  • Mathematica
    Table[1/n!*Sum[Abs[StirlingS1[n,k]]*Sum[(m-1)^k*m!*StirlingS2[k,m],{m,0,k}],{k,0,n}],{n,0,20}] (* Vaclav Kotesovec, May 07 2014 *)

Formula

a(n) = (1/n!)*Sum_{k=0..n} |Stirling1(n,k)|*A122418(k). G.f.: A(x/(1-x)) where A(x) is g.f. for A122419.
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.1221803955695846906452721220983425... . - Vaclav Kotesovec, May 07 2014

Extensions

More terms from R. J. Mathar, May 18 2007

A121316 Unlabeled version of A055203: number of different relations between n intervals (of nonzero length) on a line, up to permutation of intervals.

Original entry on oeis.org

1, 1, 7, 75, 1105, 20821, 478439, 12977815, 405909913, 14382249193, 569377926495, 24908595049347, 1193272108866953, 62128556769033261, 3493232664307133871, 210943871609662171055, 13615857409567572389361, 935523911378273899335537
Offset: 0

Views

Author

Goran Kilibarda and Vladeta Jovovic, Aug 25 2006

Keywords

Comments

Also number of labeled multigraphs without isolated vertices and with n edges.

Crossrefs

Row n=2 of A330942.

Programs

  • Maple
    seq(sum(binomial(k*(k-1)/2+n-1,n)/2^(k+1),k=0..infinity),n=0..20);
    with(combinat): A121316:=proc(n) return (1/n!)*add(abs(stirling1(n,k))*A055203(k),k=0..n): end: seq(A121316(n),n=0..20); # Nathaniel Johnston, Apr 28 2011
  • Mathematica
    Table[Sum[Binomial[k*(k-1)/2+n-1,n]/2^(k+1),{k,0,Infinity}],{n,0,20}] (* Vaclav Kotesovec, Mar 15 2014 *)
  • PARI
    a(n) = {sum(j=0, 2*n, binomial(binomial(j,2)+n-1, n) * sum(i=j, 2*n, (-1)^(i-j)*binomial(i,j)))} \\ Andrew Howroyd, Feb 09 2020

Formula

a(n) = (1/n!)* Sum_{k=0..n} |Stirling1(n,k)|*A055203(k).
a(n) = Sum_{k>=0} binomial(k*(k-1)/2+n-1,n)/2^(k+1).
a(n) ~ n^n * 2^(n-1 + log(2)/4) / (exp(n) * (log(2))^(2*n+1)). - Vaclav Kotesovec, Mar 15 2014
a(n) = Sum_{j=0..2*n} binomial(binomial(j,2)+n-1, n) * (Sum_{i=j..2*n} (-1)^(i-j)*binomial(i,j)). - Andrew Howroyd, Feb 09 2020

A301311 G.f.: Sum_{n>=0} 2^n * (1-x)^(-n^2) / 3^(n+1).

Original entry on oeis.org

1, 10, 370, 22570, 1924270, 210821290, 28223418010, 4464779024650, 814901395935550, 168556843188104050, 38965275697707264970, 9955529477371346769010, 2785811940289987110605590, 847316256984037311888049090, 278329013908504193489288029090, 98197864581209379156337136722690, 37034491818759647215732974465421990, 14868275488492647637389364332301206490
Offset: 0

Views

Author

Paul D. Hanna, Mar 18 2018

Keywords

Comments

Is there a finite expression for the terms of this sequence?
a(n) is divisible by 10 for n>0 (conjecture).

Examples

			G.f.: A(x) = 1 + 10*x + 370*x^2 + 22570*x^3 + 1924270*x^4 + 210821290*x^5 + 28223418010*x^6 + 4464779024650*x^7 + 814901395935550*x^8 + ...
such that
A(x) = 1/3 + 2/(1-x)/3^2 + 2^2/(1-x)^4/3^3 + 2^3/(1-x)^9/3^4 + 2^4/(1-x)^16/3^5 + 2^5/(1-x)^25/3^6 + 2^6/(1-x)^36/3^7 + 2^7/(1-x)^49/3^8  + 2^8/(1-x)^64/3^9 + ...
		

Crossrefs

Programs

  • PARI
    /* Continued fraction expression: */
    {a(n) = my(CF=1, q = 1/(1-x +x*O(x^n))); for(k=0, n, CF = 1/(3 - 2*q^(4*n-4*k+1)/(1 - 2*q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: 1/(3 - 2*q/(1 - 2*q*(q^2-1)/(3 - 2*q^5/(1 - 2*q^3*(q^4-1)/(3 - 2*q^9/(1 - 2*q^5*(q^6-1)/(3 - 2*q^13/(1 - 2*q^7*(q^8-1)/(3 - ...))))))))) where q = 1/(1-x), a continued fraction due to a partial elliptic theta function identity.
G.f.: Sum_{n>=0} 2^n/3^(n+1) * (1-x)^n * Product_{k=1..n} (3*(1-x)^(4*k-3) - 2) / (3*(1-x)^(4*k-1) - 2), due to a q-series identity.
a(n) = Sum_{k>=0} 2^k * binomial(k^2 + n-1, n) / 3^(k+1).
a(n) ~ 2^(2*n + 1/2 - log(3/2)/8) * 3^(log(3/2)/8 - 1) * n^n / (exp(n) * (log(3/2))^(2*n + 1)). - Vaclav Kotesovec, Mar 21 2018

A121886 a(n) = (1/n!)* Sum_{k=0..n} |Stirling1(n,k)|*A122399(k).

Original entry on oeis.org

1, 1, 5, 40, 444, 6324, 110023, 2261576, 53632424, 1441341350, 43290170494, 1437020742408, 52243864528990, 2064488610832106, 88106523694973953, 4038627301344466648, 197888243609535940091, 10321811633042512528240
Offset: 0

Views

Author

Vladeta Jovovic, Aug 31 2006

Keywords

Comments

Number of square matrices with nonnegative integer entries and without zero rows such that sum of all entries is equal to n. - Vladeta Jovovic, Mar 04 2008

Examples

			G.f.: A(x) = 1 + x + 5*x^2 + 40*x^3 + 444*x^4 + 6324*x^5 +...
where
A(x) = 1 + (1/(1-x) - 1) + (1/(1-x)^2 - 1)^2 + (1/(1-x)^3 - 1)^3 + ...
Also,
A(x) = 1/2 + (1-x)/(1 + (1-x))^2 + (1-x)^2/(1 + (1-x)^2)^3 +  + (1-x)^3/(1 + (1-x)^3)^4 + (1-x)^4/(1 + (1-x)^4)^5 + ...
		

Crossrefs

Programs

  • Mathematica
    Flatten[{1,Table[1/n!* Sum[Abs[StirlingS1[n,k]]*Sum[m^k*m!*StirlingS2[k, m], {m, 1, k}],{k,0,n}],{n,1,20}]}] (* Vaclav Kotesovec, May 07 2014 *)
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(1/(1-x+x*O(x^n))^m-1)^m),n)}

Formula

G.f.: Sum_{n>=0} ( 1/(1-x)^n - 1 )^n.
G.f.: Sum_{n>=0} (1-x)^n / (1 + (1-x)^n)^(n+1). - Paul D. Hanna, Sep 07 2018
a(n) ~ c * d^n * n! / sqrt(n), where d = A317855 = (1+exp(1/r))*r^2 = 3.161088653865428813830172202588132491726382774188556341627278..., r = 0.8737024332396683304965683047207192982139922672025395099... is the root of the equation exp(1/r)/r + (1+exp(1/r))*LambertW(-exp(-1/r)/r) = 0, and c = 0.38377369607518184186200387319561108... . - Vaclav Kotesovec, May 07 2014

Extensions

More terms from Max Alekseyev, Feb 01 2007

A120945 Triangle T(n,k) of number of labeled directed multigraphs (with loops), without isolated vertices, with n arrows and k vertices (n = 1,2,.., k = 1..2*n).

Original entry on oeis.org

1, 2, 1, 8, 18, 12, 1, 18, 108, 272, 300, 120, 1, 33, 393, 2102, 5700, 8160, 5880, 1680, 1, 54, 1122, 10688, 53550, 153132, 258720, 255360, 136080, 30240, 1, 82, 2754, 42752, 351650, 1688892, 5025832, 9540272, 11566800, 8668800, 3659040, 665280
Offset: 1

Views

Author

Vladeta Jovovic, Aug 19 2006

Keywords

Examples

			[1,2], [1,8,18,12], [1,18,108,272,300,120], [1,33,393,2102,5700,8160,5880,1680], ....
		

Crossrefs

Row sums give A104209.

Formula

T(n,k) = Sum_{j=0..k} (-1)^(k-j)*binomial(k,j)*binomial(j^2+n-1,n). Row sums give A104209.
E.g.f.: exp(-x)*Sum((1-y)^(-n^2)*x^n/n!,n=0..infinity). - Vladeta Jovovic, Aug 24 2006

A121063 Number of labeled directed multigraphs with n arcs for which every vertex has in-degree at least one and out-degree at least one.

Original entry on oeis.org

1, 0, 1, 4, 27, 246, 2783, 37424, 582153, 10276452, 202894801, 4429522252, 105943672079, 2754788353526, 77371821493913, 2334279549290960, 75286455363538607, 2584971423426768872, 94138234184851584599, 3624294240897948371036, 147080227272202880297669
Offset: 0

Views

Author

Vladeta Jovovic, Sep 06 2006

Keywords

Crossrefs

Programs

  • Maple
    n:=20: t:=taylor(sum(sum((-1)^(s-k)*binomial(s,k)*((1+x/(1-x))^(k-1)-1)^k*((1+x/(1-x))^k-1)^(s-k),k=0..s),s=0..n),x,n+1): seq(coeff(t,x,s),s=0..n); # Nathaniel Johnston, Apr 28 2011

Formula

G.f.: A(x/(1-x)) where A(x) is g.f. for A121933.

A121137 Number of labeled directed multigraphs (without loops) with n arcs and no vertex of degree 0.

Original entry on oeis.org

1, 2, 27, 572, 16787, 631362, 28980861, 1570956872, 98212870233, 6956704585554, 550626446263423, 48163137319172436, 4613554511554200251, 480324019903607680066, 54004504167811544647161, 6521368218660772789452944, 841771274136198763040518633
Offset: 0

Views

Author

Vladeta Jovovic, Sep 06 2006

Keywords

Crossrefs

Cf. A052170 (unlabeled analog), A104209, A052171.

Programs

  • Maple
    seq(sum(binomial(m*(m-1)+n-1,n)/2^(m+1),m=0..infinity),n=0..10);
    # alternate program
    A121137:= n -> add(add(binomial(m, q)*(-1)^(m-q)*binomial(n+q*(q-1)-1, n), q=0..m), m=0..2*n):
    seq(A121137(n), n=0..20); # Marko Riedel, Jan 26 2025

Formula

a(n) = Sum_{m>=0} binomial(m*(m-1)+n-1,n)/2^(m+1).
a(n) = Sum_{m=0..2n} Sum_{q=0..m} binomial(m,q)*(-1)^(m-q)*binomial(n+q*(q-1)-1,n). - Marko Riedel, Jan 26 2025
Showing 1-9 of 9 results.