cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A173219 G.f.: A(x) = Sum_{n>=0} (1 + x)^(n(n+1)/2) / 2^(n+1).

Original entry on oeis.org

1, 2, 12, 124, 1800, 33648, 769336, 20796960, 648841680, 22945907520, 907036108432, 39631833652320, 1896696894062880, 98669609894805600, 5543804125505195040, 334563594743197602272, 21583554094995765302592
Offset: 0

Views

Author

Paul D. Hanna, Mar 05 2010

Keywords

Comments

a(n) is the number of nonnegative integer matrices with n distinct columns and any number of nonzero rows with 2 ones in every column and columns in decreasing lexicographic order. - Andrew Howroyd, Jan 15 2020

Crossrefs

Row n=2 of A331278.

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, j] * Sum[Binomial[j, s]*HurwitzLerchPhi[1/2, -j - s, 0], {s, 0, j}] / 2^(j+1), {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
  • PARI
    {a(n)=local(A=sum(m=0,n^2+100,(1+x +O(x^(n+2)))^(m*(m+1)/2)/2^(m+1)));round(polcoeff(A,n))}

Formula

a(n) = A265937(n)/2. - Vaclav Kotesovec, Oct 08 2019
a(n) ~ 2^n * n^n / (2^(log(2)/4) * log(2)^(2*n+1) * exp(n)). - Vaclav Kotesovec, Oct 08 2019
a(n) = 2*A121251(n) for n > 0. - Andrew Howroyd, Jan 15 2020

A301310 G.f.: Sum_{n>=0} 2^n * (1+x)^(n^2) / 3^(n+1).

Original entry on oeis.org

1, 10, 360, 21840, 1857660, 203258160, 27188330400, 4298562686880, 784233322674120, 162161079972261480, 37477229047577953920, 9573364920705562944000, 2678416661190852872256960, 814535089079749159186189440, 267528376262254011309768677760, 94377360018309519999410315205120, 35590366640535756970223476489499280, 14287353028920891078189826021459809120
Offset: 0

Views

Author

Paul D. Hanna, Mar 18 2018

Keywords

Comments

Is there a finite expression for the terms of this sequence?
a(n) is divisible by 10 for n>0 (conjecture).

Examples

			G.f.: A(x) = 1 + 10*x + 360*x^2 + 21840*x^3 + 1857660*x^4 + 203258160*x^5 + 27188330400*x^6 + 4298562686880*x^7 + 784233322674120*x^8 + ...
such that
A(x) = 1/3 + 2*(1+x)/3^2 + 2^2*(1+x)^4/3^3 + 2^3*(1+x)^9/3^4 + 2^4*(1+x)^16/3^5 + 2^5*(1+x)^25/3^6 + 2^6*(1+x)^36/3^7 + 2^7*(1+x)^49/3^8  + 2^8*(1+x)^64/3^9 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[2/3, -2*j, 0]/3, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
  • PARI
    /* Continued fraction expression: */
    {a(n) = my(CF=1, q = 1+x +x*O(x^n)); for(k=0, n, CF = 1/(3 - 2*q^(4*n-4*k+1)/(1 - 2*q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: 1/(3 - 2*q/(1 - 2*q*(q^2-1)/(3 - 2*q^5/(1 - 2*q^3*(q^4-1)/(3 - 2*q^9/(1 - 2*q^5*(q^6-1)/(3 - 2*q^13/(1 - 2*q^7*(q^8-1)/(3 - ...))))))))) where q = (1+x), a continued fraction due to a partial elliptic theta function identity.
G.f.: Sum_{n>=0} 2^n/3^(n+1) * (1+x)^n * Product_{k=1..n} (3 - 2*(1+x)^(4*k-3)) / (3 - 2*(1+x)^(4*k-1)), due to a q-series identity.
a(n) = Sum_{k>=0} 2^k * binomial(k^2, n) / 3^(k+1).
a(n) ~ 2^(2*n + 1/2 + log(3/2)/8) * n^n / (3^(1 + log(3/2)/8) * exp(n) * (log(3/2))^(2*n + 1)). - Vaclav Kotesovec, Mar 21 2018

A265936 G.f.: Sum_{n>=0} (1 + x)^(n^2) / 2^n.

Original entry on oeis.org

2, 6, 72, 1488, 43212, 1615824, 73897824, 3995603040, 249332628600, 17635891224600, 1394325697514112, 121850733102557184, 11663364820483368384, 1213527023075625127296, 136368036713802512640384, 16459661773011642351224832, 2123742016843422531580031760, 291703805646180152870305600416, 42495460119330209128505618419584, 6544578588779477399509681497008256, 1062399800520315889891506552001161024, 181308080907736435566683700136306288320
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2015

Keywords

Examples

			G.f.: A(x) = 2 + 6*x + 72*x^2 + 1488*x^3 + 43212*x^4 + 1615824*x^5 + 73897824*x^6 + 3995603040*x^7 + 249332628600*x^8 + 17635891224600*x^9 +...
where
A(x) = 1 + (1+x)/2 + (1+x)^4/2^2 + (1+x)^9/2^3 + (1+x)^16/2^4 + (1+x)^25/2^5 + (1+x)^36/2^6 + (1+x)^49/2^7 + (1+x)^64/2^8 +...+ (1+x)^(n^2)/2^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Round[Sum[Binomial[k^2, n]/2^k, {k, Sqrt[n], Infinity}]] , {n, 0, 20}] (* G. C. Greubel, May 23 2017 *)
    Table[2*Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -2*j, 0]/2, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
  • PARI
    /* Informal listing of terms: */
    {Vec( round( sum(n=0,600,(1+x +O(x^31))^(n^2)/2^n * 1.) ) )}
    {Vec( round( sum(n=0,200, (1.+x)^n/2^n * prod(k=1,n, (2 - (1+x)^(4*k-3)) / (2 - (1+x)^(4*k-1)) +O(x^21) ) ) ) )}

Formula

G.f.: Sum_{n>=0} (1+x)^n/2^n * Product_{k=1..n} (2 - (1+x)^(4*k-3)) / (2 - (1+x)^(4*k-1)) due to a q-series identity.
G.f.: 1/(1 - (1+x)/2 /(1 - (1+x)*((1+x)^2-1)/2 /(1 - (1+x)^5/2 /(1 - (1+x)^3*((1+x)^4-1)/2 /(1 - (1+x)^9/2 /(1 - (1+x)^5*((1+x)^6-1)/2 /(1 - (1+x)^13/2 /(1 - (1+x)^7*((1+x)^8-1)/2 /(1 - ...))))))))), a continued fraction due to a partial elliptic theta function identity.
a(n) = Sum_{k>=sqrt(n)} binomial(k^2,n) / 2^k.
a(n) = Sum_{k=0..2*n} A303920(n,k) * 2^k, for n>0.
a(n) = 2 * A173217(n) for n>=0.
a(n) ~ 2^(2*n + 1/2 - log(2)/8) * n^n / (exp(n) * log(2)^(2*n + 1)). - Vaclav Kotesovec, Oct 08 2019

A300279 G.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).

Original entry on oeis.org

1, 1, 4, 16, 86, 544, 3904, 31328, 276798, 2660564, 27576614, 306051500, 3615559236, 45241980928, 597141146374, 8283583741588, 120393776421550, 1828261719906800, 28937578248560784, 476355010859517352, 8139464481630136242, 144109168217154747856, 2639508261422244889106, 49940898467864797567140, 974790619672853340925800
Offset: 0

Views

Author

Paul D. Hanna, Mar 01 2018

Keywords

Comments

Row sums of triangle A300280.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 86*x^4 + 544*x^5 + 3904*x^6 + 31328*x^7 + 276798*x^8 + 2660564*x^9 + 27576614*x^10 + ...
such that
A(x) = 1/2 + (1 + x*(1+x))/2^2 + (1 + x*(1+x)^2)^2/2^3 + (1 + x*(1+x)^3)^3/2^4 + (1 + x*(1+x)^4)^4/2^5 + (1 + x*(1+x)^5)^5/2^6 + (1 + x*(1+x)^6)^6/2^7 + ...
Also, due to a series identity,
A(x) = 1 + x*(1+x)/(2 - (1+x))^2 + x^2*(1+x)^4/(2 - (1+x)^2)^3 + x^3*(1+x)^9/(2 - (1+x)^3)^4 + x^4*(1+x)^16/(2 - (1+x)^4)^5 + x^5*(1+x)^25/(2 - (1+x)^5)^6 + x^6*(1+x)^36/(2 - (1+x)^6)^7 + ... + x^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1) + ...
Triangle A300280 is defined by
T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1), begins:
1;
0, 1;
0, 3, 1;
0, 5, 10, 1;
0, 7, 57, 21, 1;
0, 9, 252, 246, 36, 1;
0, 11, 969, 2158, 710, 55, 1;
0, 13, 3414, 15927, 10260, 1635, 78, 1; ...
the row sums of which form this sequence.
RELATED INFINITE SERIES.
At x = -1/2: the following sums are equal
S1 = Sum_{n>=1} (2^n - 1)^(n-1) / 2^(n^2),
S1 = Sum_{n>=1} (-1)^(n-1) / (2^n - 1)^n.
Explicitly,
S1 = 1/2 + 3/2^4 + 7^2/2^9 + 15^3/2^16 + 31^4/2^25 + 63^5/2^36 + 127^6/2^49 + 255^7/2^64 + 511^8/2^81 + 1023^9/2^100 + 2047^10/2^121 + 4095^11/2^144 + ...
S1 = 1 - 1/3^2 + 1/7^3 - 1/15^4 + 1/31^5 - 1/63^6 + 1/127^7 - 1/255^8 + 1/511^9 - 1/1023^10 + 1/2047^11 - 1/4095^12 + 1/8191^13 - 1/16383^14 + ...
where S1 = 0.891784622610953349715890136060239421022216970366139189336822360...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A = sum(m=0, n, x^m * (1+x)^(m^2) / (2 - (1 + x + x*O(x^n))^m )^(m+1) )); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f. is given by:
(1) Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).
(2) Sum_{n>=0} x^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1).
Formulas for terms.
a(n) = Sum_{k=0..n} Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1).

A303920 G.f.: A(x,y) = (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2).

Original entry on oeis.org

1, 0, 1, 1, 0, 0, 6, 6, 0, 0, 0, 4, 56, 56, 4, 0, 0, 0, 1, 117, 722, 722, 117, 1, 0, 0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0, 0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0, 0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0, 0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0, 0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0
Offset: 0

Views

Author

Paul D. Hanna, May 02 2018

Keywords

Comments

G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..2*n} T(n,k) * x^n*y^k, where T(n,k) is the term of this triangle at position k in row n.

Examples

			G.f.: A(x,y) = (1-y) * ( 1 + y*(1 + x*(1-y)^2) + y^2*(1 + x*(1-y)^2)^4 + y^3*(1 + x*(1-y)^2)^9 + y^4*(1 + x*(1-y)^2)^16 + y^5*(1 + x*(1-y)^2)^25 + ... ).
Explicitly,
A(x,y) = 1 + x*(y + y^2) + x^2*(6*y^2 + 6*y^3) + x^3*(4*y^2 + 56*y^3 + 56*y^4 + 4*y^5) + x^4*(y^2 + 117*y^3 + 722*y^4 + 722*y^5 + 117*y^6 + y^7) + x^5*(126*y^3 + 2982*y^4 + 12012*y^5 + 12012*y^6 + 2982*y^7 + 126*y^8) + x^6*(84*y^3 + 6916*y^4 + 79548*y^5 + 246092*y^6 + 246092*y^7 + 79548*y^8 + 6916*y^9 + 84*y^10) + x^7*(36*y^3 + 10900*y^4 + 312880*y^5 + 2322000*y^6 + 6002824*y^7 + 6002824*y^8 + 2322000*y^9 + 312880*y^10 + 10900*y^11 + 36*y^12) + x^8*(9*y^3 + 12717*y^4 + 864009*y^5 + 13617765*y^6 + 74916306*y^7 + 170048394*y^8 + 170048394*y^9 + 74916306*y^10 + 13617765*y^11 + 864009*y^12 + 12717*y^13 + 9*y^14) + x^9*(y^3 + 11421*y^4 + 1825786*y^5 + 57282026*y^6 + 604000555*y^7 + 2669115383*y^8 + 5489377628*y^9 + 5489377628*y^10 + 2669115383*y^11 + 604000555*y^12 + 57282026*y^13 + 1825786*y^14 + 11421*y^15 + y^16) + ...
This triangle begins:
[1];
[0, 1, 1];
[0, 0, 6, 6, 0];
[0, 0, 4, 56, 56, 4, 0];
[0, 0, 1, 117, 722, 722, 117, 1, 0];
[0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0];
[0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0];
[0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0];
[0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0];
[0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0]; ...
		

Crossrefs

Cf. A303921 (diagonal), A303922 (column sums), A001813 (row sums), A265936 (y=2), A173217.

Programs

  • PARI
    /* G.f. by Definition: */
    {T(n,k) = my(A = (1-y) * sum(m=0,2*n, y^m * (1 + x*(1-y)^2  +x*O(x^(2*n)) )^(m^2))); polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
    
  • PARI
    /* Continued fraction expression: */
    {T(n,k) = my(CF=1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); for(k=0, n, CF = 1/(1 - q^(4*n-4*k+1)*y/(1 - q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*y*CF)) ); polcoeff(polcoeff((1-y)*CF, n,x),k,y)}
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
    
  • PARI
    /* G.f. by q-series identity: */
    {T(n,k) = my(A =1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); A = (1-y) * sum(m=0,2*n, y^m*q^m * prod(k=1,m, (1 - y*q^(4*k-3)) / (1 - y*q^(4*k-1) +x*O(x^(2*n))) )); polcoeff(polcoeff(A, n,x),k,y)}
    for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))

Formula

GENERATING FUNCTIONS.
(1) A(x,y) = (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2).
(2) A(x,y) = (1-y) * Sum_{n>=0} y^n * q^n * Product_{k=1..n} (1 - q^(4*k-3)*y) / (1 - q^(4*k-1)*y), where q = 1 + x*(1-y)^2, due to a q-series identity.
(3) A(x,y) = (1-y)/(1 - q*y/(1 - q*(q^2-1)*y/(1 - q^5*y/(1 - q^3*(q^4-1)*y/(1 - q^9*y/(1- q^5*(q^6-1)*y/(1 - q^13*y/(1 - q^7*(q^8-1)*y/(1 - ...))))))))), where q = 1 + x*(1-y)^2, a continued fraction due to an identity of a partial elliptic theta function.
FORMULAS INVOLVING TERMS.
Sum_{k=0..2*n} T(n,k) = (2*n)!/n!, for n>=0 (row sums = A001813).
Sum_{k=0..2*n} T(n,k) * (-1)^k = 0, for n>=1 (symmetric rows).
Sum_{k=0..2*n} T(n,k) * 2^k = A265936(n), for n>=1.
Sum_{k=0..2*n} T(n,k) / 2^k = A173217(n) / 4^n, for n>=0.
Sum_{j=0..k^2} T(j,k) = A303922(k), for k>=0 (column sums).
T(n,n) = A303921(n), for n>=0 (diagonal).

A173218 G.f.: A(x) = Sum_{n>=0} (1 + x)^(n^2+n) / 2^(n+1).

Original entry on oeis.org

1, 4, 50, 1040, 30300, 1135080, 51972668, 2812429632, 175606496520, 12426817517920, 982846762742416, 85916923493646752, 8225856593959648696, 856044724445883011520, 96213518828394481754400
Offset: 0

Views

Author

Paul D. Hanna, Mar 05 2010

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, j] * Sum[Binomial[j, s] * HurwitzLerchPhi[1/2, -j - s, 0], {s, 0, j}], {j, 0, n}] / (2*n!), {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
  • PARI
    {a(n)=local(A=sum(m=0,n^2+100,(1+x +O(x^(n+2)))^(m*(m+1))/2^(m+1)));round(polcoeff(A,n))}

Formula

a(n) ~ 2^(2*n) * n^n / (2^(log(2)/8) * log(2)^(2*n+1) * exp(n)). - Vaclav Kotesovec, Oct 08 2019

A301466 a(n) = Sum_{k>=0} binomial(k^3, n)/2^(k+1).

Original entry on oeis.org

1, 13, 2335, 1178873, 1168712311, 1916687692685, 4697337224419543, 16082097033630615185, 73313708225823014181097, 429319086610079876821621425, 3140585308524019620784003889263, 28066697522114849327295724261347841, 300886927215791917153044786581553617063
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 21 2018

Keywords

Crossrefs

Programs

  • Mathematica
    Table[Sum[Binomial[k^3, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 15}]
    Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -3*j, 0]/2, {j, 0, n}] / n!, {n, 0, 15}]

Formula

a(n) ~ 3^(3*n + 1/2) * n^(2*n) / (2 * exp(2*n) * (log(2))^(3*n + 1)).
G.f.: Sum_{n>=0} (1 + x)^(n^3) / 2^(n+1).

A301432 G.f.: Sum_{n>=0} 3^n * (1+x)^(n^2) / 4^(n+1).

Original entry on oeis.org

1, 21, 1512, 182448, 30845052, 6706403424, 1782361433664, 559861341721920, 202922346528231120, 83358099246202940880, 38271708686845732234752, 19421327571536329073316864, 10794249397953336851774993664, 6521104275997643157262604783616, 4254768377324045826054766465227264, 2981719456871640091643441908508931072
Offset: 0

Views

Author

Paul D. Hanna, Mar 21 2018

Keywords

Comments

a(n) is divisible by 21 for n>0 (conjecture).
In general, for s > 1, Sum_{k>=0} binomial(k^2, n) / s^k is asymptotic to 2^(2*n + 1/2) * n^n / (s^(log(s)/8) * exp(n) * (log(s))^(2*n + 1)). - Vaclav Kotesovec, Mar 21 2018

Examples

			G.f.: A(x) = 1 + 21*x + 1512*x^2 + 182448*x^3 + 30845052*x^4 + 6706403424*x^5 + 1782361433664*x^6 + 559861341721920*x^7 + ...
such that
A(x) = 1/4 + 3*(1+x)/4^2 + 3^2*(1+x)^4/4^3 + 3^3*(1+x)^9/4^4 + 3^4*(1+x)^16/4^5 + 3^5*(1+x)^25/4^6 + 3^6*(1+x)^36/4^7 + 3^7*(1+x)^49/4^8  + 3^8*(1+x)^64/4^9 + ...
		

Crossrefs

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[3/4, -2*j, 0]/4, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
  • PARI
    /* Continued fraction expression: */
    {a(n) = my(CF=1, q = 1+x +x*O(x^n)); for(k=0, n, CF = 1/(4 - 3*q^(4*n-4*k+1)/(1 - 3*q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

G.f.: 1/(4 - 3*q/(1 - 3*q*(q^2-1)/(4 - 3*q^5/(1 - 3*q^3*(q^4-1)/(4 - 3*q^9/(1 - 3*q^5*(q^6-1)/(4 - 3*q^13/(1 - 3*q^7*(q^8-1)/(4 - ...))))))))) where q = (1+x), a continued fraction due to a partial elliptic theta function identity.
G.f.: Sum_{n>=0} 3^n/4^(n+1) * (1+x)^n * Product_{k=1..n} (4 - 3*(1+x)^(4*k-3)) / (4 - 3*(1+x)^(4*k-1)), due to a q-series identity.
a(n) = Sum_{k>=0} 3^k * binomial(k^2, n) / 4^(k+1).
a(n) ~ 2^(2*n - 3/2) * n^n / ((4/3)^(log(4/3)/8) * exp(n) * (log(4/3))^(2*n + 1)). - Vaclav Kotesovec, Mar 21 2018

A301468 a(n) = Sum_{k>=0} binomial(k^4, n)/2^(k+1).

Original entry on oeis.org

1, 75, 272880, 4681655040, 221478589107480, 22313622005672849712, 4108665216956980742226192, 1249503956658157724969373808320, 583952821303314451291898006535866460, 397372225886096887788939487944785734626120, 377577476850495509525002042506806447493291890064
Offset: 0

Views

Author

Vaclav Kotesovec, Mar 21 2018

Keywords

Comments

In general, for m > 2, Sum_{k>=0} binomial(k^m, n) / 2^(k+1) is asymptotic to m^(m*n + 1/2) * n^((m-1)*n) / (2*exp((m-1)*n) * (log(2))^(m*n + 1)).

Crossrefs

Cf. A173217 (m=2), A301466 (m=3), A301310.

Programs

  • Mathematica
    Table[Sum[Binomial[k^4, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 12}]
    Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -4*j, 0]/2, {j, 0, n}] / n!, {n, 0, 12}]

Formula

a(n) ~ 2^(8*n) * n^(3*n) / (exp(3*n) * (log(2))^(4*n+1)).

A304860 G.f. A(x) satisfies: x = Sum_{n>=0} ( (1+x)^(n^2) - A(x)^n ) / 2^(n+1).

Original entry on oeis.org

1, 2, 32, 608, 17750, 683504, 32183336, 1782735248, 113381031512, 8138225237204, 650735042088080, 57369033007665680, 5529284312514428840, 578479328396134930928, 65297339893598788494368, 7910610591246432715704704, 1023854667471171305890388408, 141001918216059025744295715872, 20587944237516075824024078357264, 3176963079503660078673757802123360
Offset: 0

Views

Author

Paul D. Hanna, May 28 2018

Keywords

Examples

			G.f.: A(x) = 1 + 2*x + 32*x^2 + 608*x^3 + 17750*x^4 + 683504*x^5 + 32183336*x^6 + 1782735248*x^7 + 113381031512*x^8 + 8138225237204*x^9 + ...
such that
x = ((1+x) - A(x))/2^2 + ((1+x)^4 - A(x)^2)/2^3 + ((1+x)^9 - A(x)^3)/2^4 + ((1+x)^16 - A(x)^4)/2^5 + ((1+x)^25 - A(x)^5)/2^6 + ((1+x)^36 - A(x)^6)/2^7 + ...
RELATED SERIES.
G(x) = Sum_{n>=0} (1+x)^(n^2) / 2^(n+1) = 1 + 3*x + 36*x^2 + 744*x^3 + 21606*x^4 + 807912*x^5 + 36948912*x^6 + 1997801520*x^7 + 124666314300*x^8 + ... + A173217(n)*x^n + ...
1/(2 - A(x)) = G(x) - x = 1 + 2*x + 36*x^2 + 744*x^3 + 21606*x^4 + 807912*x^5 + 36948912*x^6 + 1997801520*x^7 + 124666314300*x^8 + ...
Let F(x) satisfy
x = Sum_{n>=0} ( F(x)^n - A(x)^n ) / 2^(n+1), then
F(x) = 1 + 3*x + 27*x^2 + 555*x^3 + 16737*x^4 + 652815*x^5 + 30967917*x^6 + 1724292411*x^7 + 110091861729*x^8 + 7926482395935*x^9 + ...
where 1/(2 - F(x)) = x + 1/(2 - A(x)).
		

Crossrefs

Cf. A173217.

Formula

G.f. A(x) satisfies:
(1) x = Sum_{n>=0} ( (1+x)^(n^2) - A(x)^n ) / 2^(n+1).
(2) A(x) = 2 - 1/(G(x) - x), where G(x) = Sum_{n>=0} (1+x)^(n^2) / 2^(n+1) is the g.f. of A173217.
Showing 1-10 of 10 results.