A173219
G.f.: A(x) = Sum_{n>=0} (1 + x)^(n(n+1)/2) / 2^(n+1).
Original entry on oeis.org
1, 2, 12, 124, 1800, 33648, 769336, 20796960, 648841680, 22945907520, 907036108432, 39631833652320, 1896696894062880, 98669609894805600, 5543804125505195040, 334563594743197602272, 21583554094995765302592
Offset: 0
-
Table[Sum[StirlingS1[n, j] * Sum[Binomial[j, s]*HurwitzLerchPhi[1/2, -j - s, 0], {s, 0, j}] / 2^(j+1), {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
-
{a(n)=local(A=sum(m=0,n^2+100,(1+x +O(x^(n+2)))^(m*(m+1)/2)/2^(m+1)));round(polcoeff(A,n))}
A301310
G.f.: Sum_{n>=0} 2^n * (1+x)^(n^2) / 3^(n+1).
Original entry on oeis.org
1, 10, 360, 21840, 1857660, 203258160, 27188330400, 4298562686880, 784233322674120, 162161079972261480, 37477229047577953920, 9573364920705562944000, 2678416661190852872256960, 814535089079749159186189440, 267528376262254011309768677760, 94377360018309519999410315205120, 35590366640535756970223476489499280, 14287353028920891078189826021459809120
Offset: 0
G.f.: A(x) = 1 + 10*x + 360*x^2 + 21840*x^3 + 1857660*x^4 + 203258160*x^5 + 27188330400*x^6 + 4298562686880*x^7 + 784233322674120*x^8 + ...
such that
A(x) = 1/3 + 2*(1+x)/3^2 + 2^2*(1+x)^4/3^3 + 2^3*(1+x)^9/3^4 + 2^4*(1+x)^16/3^5 + 2^5*(1+x)^25/3^6 + 2^6*(1+x)^36/3^7 + 2^7*(1+x)^49/3^8 + 2^8*(1+x)^64/3^9 + ...
-
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[2/3, -2*j, 0]/3, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
-
/* Continued fraction expression: */
{a(n) = my(CF=1, q = 1+x +x*O(x^n)); for(k=0, n, CF = 1/(3 - 2*q^(4*n-4*k+1)/(1 - 2*q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
for(n=0, 30, print1(a(n), ", "))
A265936
G.f.: Sum_{n>=0} (1 + x)^(n^2) / 2^n.
Original entry on oeis.org
2, 6, 72, 1488, 43212, 1615824, 73897824, 3995603040, 249332628600, 17635891224600, 1394325697514112, 121850733102557184, 11663364820483368384, 1213527023075625127296, 136368036713802512640384, 16459661773011642351224832, 2123742016843422531580031760, 291703805646180152870305600416, 42495460119330209128505618419584, 6544578588779477399509681497008256, 1062399800520315889891506552001161024, 181308080907736435566683700136306288320
Offset: 0
G.f.: A(x) = 2 + 6*x + 72*x^2 + 1488*x^3 + 43212*x^4 + 1615824*x^5 + 73897824*x^6 + 3995603040*x^7 + 249332628600*x^8 + 17635891224600*x^9 +...
where
A(x) = 1 + (1+x)/2 + (1+x)^4/2^2 + (1+x)^9/2^3 + (1+x)^16/2^4 + (1+x)^25/2^5 + (1+x)^36/2^6 + (1+x)^49/2^7 + (1+x)^64/2^8 +...+ (1+x)^(n^2)/2^n +...
-
Table[Round[Sum[Binomial[k^2, n]/2^k, {k, Sqrt[n], Infinity}]] , {n, 0, 20}] (* G. C. Greubel, May 23 2017 *)
Table[2*Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -2*j, 0]/2, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
-
/* Informal listing of terms: */
{Vec( round( sum(n=0,600,(1+x +O(x^31))^(n^2)/2^n * 1.) ) )}
{Vec( round( sum(n=0,200, (1.+x)^n/2^n * prod(k=1,n, (2 - (1+x)^(4*k-3)) / (2 - (1+x)^(4*k-1)) +O(x^21) ) ) ) )}
A300279
G.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).
Original entry on oeis.org
1, 1, 4, 16, 86, 544, 3904, 31328, 276798, 2660564, 27576614, 306051500, 3615559236, 45241980928, 597141146374, 8283583741588, 120393776421550, 1828261719906800, 28937578248560784, 476355010859517352, 8139464481630136242, 144109168217154747856, 2639508261422244889106, 49940898467864797567140, 974790619672853340925800
Offset: 0
G.f.: A(x) = 1 + x + 4*x^2 + 16*x^3 + 86*x^4 + 544*x^5 + 3904*x^6 + 31328*x^7 + 276798*x^8 + 2660564*x^9 + 27576614*x^10 + ...
such that
A(x) = 1/2 + (1 + x*(1+x))/2^2 + (1 + x*(1+x)^2)^2/2^3 + (1 + x*(1+x)^3)^3/2^4 + (1 + x*(1+x)^4)^4/2^5 + (1 + x*(1+x)^5)^5/2^6 + (1 + x*(1+x)^6)^6/2^7 + ...
Also, due to a series identity,
A(x) = 1 + x*(1+x)/(2 - (1+x))^2 + x^2*(1+x)^4/(2 - (1+x)^2)^3 + x^3*(1+x)^9/(2 - (1+x)^3)^4 + x^4*(1+x)^16/(2 - (1+x)^4)^5 + x^5*(1+x)^25/(2 - (1+x)^5)^6 + x^6*(1+x)^36/(2 - (1+x)^6)^7 + ... + x^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1) + ...
Triangle A300280 is defined by
T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1), begins:
1;
0, 1;
0, 3, 1;
0, 5, 10, 1;
0, 7, 57, 21, 1;
0, 9, 252, 246, 36, 1;
0, 11, 969, 2158, 710, 55, 1;
0, 13, 3414, 15927, 10260, 1635, 78, 1; ...
the row sums of which form this sequence.
RELATED INFINITE SERIES.
At x = -1/2: the following sums are equal
S1 = Sum_{n>=1} (2^n - 1)^(n-1) / 2^(n^2),
S1 = Sum_{n>=1} (-1)^(n-1) / (2^n - 1)^n.
Explicitly,
S1 = 1/2 + 3/2^4 + 7^2/2^9 + 15^3/2^16 + 31^4/2^25 + 63^5/2^36 + 127^6/2^49 + 255^7/2^64 + 511^8/2^81 + 1023^9/2^100 + 2047^10/2^121 + 4095^11/2^144 + ...
S1 = 1 - 1/3^2 + 1/7^3 - 1/15^4 + 1/31^5 - 1/63^6 + 1/127^7 - 1/255^8 + 1/511^9 - 1/1023^10 + 1/2047^11 - 1/4095^12 + 1/8191^13 - 1/16383^14 + ...
where S1 = 0.891784622610953349715890136060239421022216970366139189336822360...
-
{a(n) = my(A = sum(m=0, n, x^m * (1+x)^(m^2) / (2 - (1 + x + x*O(x^n))^m )^(m+1) )); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
A303920
G.f.: A(x,y) = (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2).
Original entry on oeis.org
1, 0, 1, 1, 0, 0, 6, 6, 0, 0, 0, 4, 56, 56, 4, 0, 0, 0, 1, 117, 722, 722, 117, 1, 0, 0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0, 0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0, 0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0, 0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0, 0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0
Offset: 0
G.f.: A(x,y) = (1-y) * ( 1 + y*(1 + x*(1-y)^2) + y^2*(1 + x*(1-y)^2)^4 + y^3*(1 + x*(1-y)^2)^9 + y^4*(1 + x*(1-y)^2)^16 + y^5*(1 + x*(1-y)^2)^25 + ... ).
Explicitly,
A(x,y) = 1 + x*(y + y^2) + x^2*(6*y^2 + 6*y^3) + x^3*(4*y^2 + 56*y^3 + 56*y^4 + 4*y^5) + x^4*(y^2 + 117*y^3 + 722*y^4 + 722*y^5 + 117*y^6 + y^7) + x^5*(126*y^3 + 2982*y^4 + 12012*y^5 + 12012*y^6 + 2982*y^7 + 126*y^8) + x^6*(84*y^3 + 6916*y^4 + 79548*y^5 + 246092*y^6 + 246092*y^7 + 79548*y^8 + 6916*y^9 + 84*y^10) + x^7*(36*y^3 + 10900*y^4 + 312880*y^5 + 2322000*y^6 + 6002824*y^7 + 6002824*y^8 + 2322000*y^9 + 312880*y^10 + 10900*y^11 + 36*y^12) + x^8*(9*y^3 + 12717*y^4 + 864009*y^5 + 13617765*y^6 + 74916306*y^7 + 170048394*y^8 + 170048394*y^9 + 74916306*y^10 + 13617765*y^11 + 864009*y^12 + 12717*y^13 + 9*y^14) + x^9*(y^3 + 11421*y^4 + 1825786*y^5 + 57282026*y^6 + 604000555*y^7 + 2669115383*y^8 + 5489377628*y^9 + 5489377628*y^10 + 2669115383*y^11 + 604000555*y^12 + 57282026*y^13 + 1825786*y^14 + 11421*y^15 + y^16) + ...
This triangle begins:
[1];
[0, 1, 1];
[0, 0, 6, 6, 0];
[0, 0, 4, 56, 56, 4, 0];
[0, 0, 1, 117, 722, 722, 117, 1, 0];
[0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0];
[0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0];
[0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0];
[0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0];
[0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0]; ...
-
/* G.f. by Definition: */
{T(n,k) = my(A = (1-y) * sum(m=0,2*n, y^m * (1 + x*(1-y)^2 +x*O(x^(2*n)) )^(m^2))); polcoeff(polcoeff(A, n,x),k,y)}
for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
-
/* Continued fraction expression: */
{T(n,k) = my(CF=1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); for(k=0, n, CF = 1/(1 - q^(4*n-4*k+1)*y/(1 - q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*y*CF)) ); polcoeff(polcoeff((1-y)*CF, n,x),k,y)}
for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
-
/* G.f. by q-series identity: */
{T(n,k) = my(A =1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); A = (1-y) * sum(m=0,2*n, y^m*q^m * prod(k=1,m, (1 - y*q^(4*k-3)) / (1 - y*q^(4*k-1) +x*O(x^(2*n))) )); polcoeff(polcoeff(A, n,x),k,y)}
for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
A173218
G.f.: A(x) = Sum_{n>=0} (1 + x)^(n^2+n) / 2^(n+1).
Original entry on oeis.org
1, 4, 50, 1040, 30300, 1135080, 51972668, 2812429632, 175606496520, 12426817517920, 982846762742416, 85916923493646752, 8225856593959648696, 856044724445883011520, 96213518828394481754400
Offset: 0
-
Table[Sum[StirlingS1[n, j] * Sum[Binomial[j, s] * HurwitzLerchPhi[1/2, -j - s, 0], {s, 0, j}], {j, 0, n}] / (2*n!), {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
-
{a(n)=local(A=sum(m=0,n^2+100,(1+x +O(x^(n+2)))^(m*(m+1))/2^(m+1)));round(polcoeff(A,n))}
A301466
a(n) = Sum_{k>=0} binomial(k^3, n)/2^(k+1).
Original entry on oeis.org
1, 13, 2335, 1178873, 1168712311, 1916687692685, 4697337224419543, 16082097033630615185, 73313708225823014181097, 429319086610079876821621425, 3140585308524019620784003889263, 28066697522114849327295724261347841, 300886927215791917153044786581553617063
Offset: 0
-
Table[Sum[Binomial[k^3, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 15}]
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -3*j, 0]/2, {j, 0, n}] / n!, {n, 0, 15}]
A301432
G.f.: Sum_{n>=0} 3^n * (1+x)^(n^2) / 4^(n+1).
Original entry on oeis.org
1, 21, 1512, 182448, 30845052, 6706403424, 1782361433664, 559861341721920, 202922346528231120, 83358099246202940880, 38271708686845732234752, 19421327571536329073316864, 10794249397953336851774993664, 6521104275997643157262604783616, 4254768377324045826054766465227264, 2981719456871640091643441908508931072
Offset: 0
G.f.: A(x) = 1 + 21*x + 1512*x^2 + 182448*x^3 + 30845052*x^4 + 6706403424*x^5 + 1782361433664*x^6 + 559861341721920*x^7 + ...
such that
A(x) = 1/4 + 3*(1+x)/4^2 + 3^2*(1+x)^4/4^3 + 3^3*(1+x)^9/4^4 + 3^4*(1+x)^16/4^5 + 3^5*(1+x)^25/4^6 + 3^6*(1+x)^36/4^7 + 3^7*(1+x)^49/4^8 + 3^8*(1+x)^64/4^9 + ...
-
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[3/4, -2*j, 0]/4, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
-
/* Continued fraction expression: */
{a(n) = my(CF=1, q = 1+x +x*O(x^n)); for(k=0, n, CF = 1/(4 - 3*q^(4*n-4*k+1)/(1 - 3*q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
for(n=0, 30, print1(a(n), ", "))
A301468
a(n) = Sum_{k>=0} binomial(k^4, n)/2^(k+1).
Original entry on oeis.org
1, 75, 272880, 4681655040, 221478589107480, 22313622005672849712, 4108665216956980742226192, 1249503956658157724969373808320, 583952821303314451291898006535866460, 397372225886096887788939487944785734626120, 377577476850495509525002042506806447493291890064
Offset: 0
-
Table[Sum[Binomial[k^4, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 12}]
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -4*j, 0]/2, {j, 0, n}] / n!, {n, 0, 12}]
A304860
G.f. A(x) satisfies: x = Sum_{n>=0} ( (1+x)^(n^2) - A(x)^n ) / 2^(n+1).
Original entry on oeis.org
1, 2, 32, 608, 17750, 683504, 32183336, 1782735248, 113381031512, 8138225237204, 650735042088080, 57369033007665680, 5529284312514428840, 578479328396134930928, 65297339893598788494368, 7910610591246432715704704, 1023854667471171305890388408, 141001918216059025744295715872, 20587944237516075824024078357264, 3176963079503660078673757802123360
Offset: 0
G.f.: A(x) = 1 + 2*x + 32*x^2 + 608*x^3 + 17750*x^4 + 683504*x^5 + 32183336*x^6 + 1782735248*x^7 + 113381031512*x^8 + 8138225237204*x^9 + ...
such that
x = ((1+x) - A(x))/2^2 + ((1+x)^4 - A(x)^2)/2^3 + ((1+x)^9 - A(x)^3)/2^4 + ((1+x)^16 - A(x)^4)/2^5 + ((1+x)^25 - A(x)^5)/2^6 + ((1+x)^36 - A(x)^6)/2^7 + ...
RELATED SERIES.
G(x) = Sum_{n>=0} (1+x)^(n^2) / 2^(n+1) = 1 + 3*x + 36*x^2 + 744*x^3 + 21606*x^4 + 807912*x^5 + 36948912*x^6 + 1997801520*x^7 + 124666314300*x^8 + ... + A173217(n)*x^n + ...
1/(2 - A(x)) = G(x) - x = 1 + 2*x + 36*x^2 + 744*x^3 + 21606*x^4 + 807912*x^5 + 36948912*x^6 + 1997801520*x^7 + 124666314300*x^8 + ...
Let F(x) satisfy
x = Sum_{n>=0} ( F(x)^n - A(x)^n ) / 2^(n+1), then
F(x) = 1 + 3*x + 27*x^2 + 555*x^3 + 16737*x^4 + 652815*x^5 + 30967917*x^6 + 1724292411*x^7 + 110091861729*x^8 + 7926482395935*x^9 + ...
where 1/(2 - F(x)) = x + 1/(2 - A(x)).
Showing 1-10 of 10 results.
Comments