A173217
G.f.: A(x) = Sum_{n>=0} (1 + x)^(n^2) / 2^(n+1).
Original entry on oeis.org
1, 3, 36, 744, 21606, 807912, 36948912, 1997801520, 124666314300, 8817945612300, 697162848757056, 60925366551278592, 5831682410241684192, 606763511537812563648, 68184018356901256320192, 8229830886505821175612416, 1061871008421711265790015880, 145851902823090076435152800208, 21247730059665104564252809209792
Offset: 0
-
Table[Sum[Binomial[k^2, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -2*j, 0]/2, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
-
{a(n)=local(A=sum(m=0,n^2+100,(1+x +O(x^(n+2)))^(m^2)/2^(m+1)));round(polcoeff(A,n))}
-
/* Continued fraction expression: */
{a(n) = my(CF=1, q = 1+x +x*O(x^n)); for(k=0, n, CF = 1/(2 - q^(4*n-4*k+1)/(1 - q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
for(n=0, 30, print1(a(n), ", ")) \\ Paul D. Hanna, Mar 18 2018
A303920
G.f.: A(x,y) = (1-y) * Sum_{n>=0} y^n * (1 + x*(1-y)^2)^(n^2).
Original entry on oeis.org
1, 0, 1, 1, 0, 0, 6, 6, 0, 0, 0, 4, 56, 56, 4, 0, 0, 0, 1, 117, 722, 722, 117, 1, 0, 0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0, 0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0, 0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0, 0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0, 0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0
Offset: 0
G.f.: A(x,y) = (1-y) * ( 1 + y*(1 + x*(1-y)^2) + y^2*(1 + x*(1-y)^2)^4 + y^3*(1 + x*(1-y)^2)^9 + y^4*(1 + x*(1-y)^2)^16 + y^5*(1 + x*(1-y)^2)^25 + ... ).
Explicitly,
A(x,y) = 1 + x*(y + y^2) + x^2*(6*y^2 + 6*y^3) + x^3*(4*y^2 + 56*y^3 + 56*y^4 + 4*y^5) + x^4*(y^2 + 117*y^3 + 722*y^4 + 722*y^5 + 117*y^6 + y^7) + x^5*(126*y^3 + 2982*y^4 + 12012*y^5 + 12012*y^6 + 2982*y^7 + 126*y^8) + x^6*(84*y^3 + 6916*y^4 + 79548*y^5 + 246092*y^6 + 246092*y^7 + 79548*y^8 + 6916*y^9 + 84*y^10) + x^7*(36*y^3 + 10900*y^4 + 312880*y^5 + 2322000*y^6 + 6002824*y^7 + 6002824*y^8 + 2322000*y^9 + 312880*y^10 + 10900*y^11 + 36*y^12) + x^8*(9*y^3 + 12717*y^4 + 864009*y^5 + 13617765*y^6 + 74916306*y^7 + 170048394*y^8 + 170048394*y^9 + 74916306*y^10 + 13617765*y^11 + 864009*y^12 + 12717*y^13 + 9*y^14) + x^9*(y^3 + 11421*y^4 + 1825786*y^5 + 57282026*y^6 + 604000555*y^7 + 2669115383*y^8 + 5489377628*y^9 + 5489377628*y^10 + 2669115383*y^11 + 604000555*y^12 + 57282026*y^13 + 1825786*y^14 + 11421*y^15 + y^16) + ...
This triangle begins:
[1];
[0, 1, 1];
[0, 0, 6, 6, 0];
[0, 0, 4, 56, 56, 4, 0];
[0, 0, 1, 117, 722, 722, 117, 1, 0];
[0, 0, 0, 126, 2982, 12012, 12012, 2982, 126, 0, 0];
[0, 0, 0, 84, 6916, 79548, 246092, 246092, 79548, 6916, 84, 0, 0];
[0, 0, 0, 36, 10900, 312880, 2322000, 6002824, 6002824, 2322000, 312880, 10900, 36, 0, 0];
[0, 0, 0, 9, 12717, 864009, 13617765, 74916306, 170048394, 170048394, 74916306, 13617765, 864009, 12717, 9, 0, 0];
[0, 0, 0, 1, 11421, 1825786, 57282026, 604000555, 2669115383, 5489377628, 5489377628, 2669115383, 604000555, 57282026, 1825786, 11421, 1, 0, 0]; ...
-
/* G.f. by Definition: */
{T(n,k) = my(A = (1-y) * sum(m=0,2*n, y^m * (1 + x*(1-y)^2 +x*O(x^(2*n)) )^(m^2))); polcoeff(polcoeff(A, n,x),k,y)}
for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
-
/* Continued fraction expression: */
{T(n,k) = my(CF=1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); for(k=0, n, CF = 1/(1 - q^(4*n-4*k+1)*y/(1 - q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*y*CF)) ); polcoeff(polcoeff((1-y)*CF, n,x),k,y)}
for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
-
/* G.f. by q-series identity: */
{T(n,k) = my(A =1, q = 1 + x*(1-y)^2 +x*O(x^(2*n))); A = (1-y) * sum(m=0,2*n, y^m*q^m * prod(k=1,m, (1 - y*q^(4*k-3)) / (1 - y*q^(4*k-1) +x*O(x^(2*n))) )); polcoeff(polcoeff(A, n,x),k,y)}
for(n=0, 10, for(k=0,2*n, print1(T(n,k), ", ")); print(""))
A265937
G.f.: Sum_{n>=0} (1 + x)^(n*(n+1)/2) / 2^n.
Original entry on oeis.org
2, 4, 24, 248, 3600, 67296, 1538672, 41593920, 1297683360, 45891815040, 1814072216864, 79263667304640, 3793393788125760, 197339219789611200, 11087608251010390080, 669127189486395204544, 43167108189991530605184, 2964541208087967215725440, 215934869210274766223069440, 16627513858173093851116296960, 1349582577808759197056647917696, 115158206188199564942934814336896, 10305721256666828267464573643658240
Offset: 0
G.f.: A(x) = 2 + 4*x + 24*x^2 + 248*x^3 + 3600*x^4 + 67296*x^5 + 1538672*x^6 + 41593920*x^7 + 1297683360*x^8 + 45891815040*x^9 + 1814072216864*x^10 +...
where
A(x) = 1 + (1+x)/2 + (1+x)^3/2^2 + (1+x)^6/2^3 + (1+x)^10/2^4 + (1+x)^15/2^5 + (1+x)^21/2^6 + (1+x)^28/2^7 + (1+x)^36/2^8 +...+ (1+x)^(n*(n+1)/2)/2^n +...
-
Table[Sum[StirlingS1[n, j] * Sum[Binomial[j, s] * HurwitzLerchPhi[1/2, -j - s, 0], {s, 0, j}] / 2^j, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
-
/* Informal listing of terms: */
{Vec( round( sum(n=0, 600, (1+x +O(x^31))^(n*(n+1)/2)/2^n * 1.) ) )}
{Vec( round( sum(n=0, 200, (1.+x)^n/2^n * prod(k=1, n, (2 - (1+x)^(2*k-1)) / (2 - (1+x)^(2*k)) +O(x^21) ) ) ) )}
Showing 1-3 of 3 results.
Comments