cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A173219 G.f.: A(x) = Sum_{n>=0} (1 + x)^(n(n+1)/2) / 2^(n+1).

Original entry on oeis.org

1, 2, 12, 124, 1800, 33648, 769336, 20796960, 648841680, 22945907520, 907036108432, 39631833652320, 1896696894062880, 98669609894805600, 5543804125505195040, 334563594743197602272, 21583554094995765302592
Offset: 0

Views

Author

Paul D. Hanna, Mar 05 2010

Keywords

Comments

a(n) is the number of nonnegative integer matrices with n distinct columns and any number of nonzero rows with 2 ones in every column and columns in decreasing lexicographic order. - Andrew Howroyd, Jan 15 2020

Crossrefs

Row n=2 of A331278.

Programs

  • Mathematica
    Table[Sum[StirlingS1[n, j] * Sum[Binomial[j, s]*HurwitzLerchPhi[1/2, -j - s, 0], {s, 0, j}] / 2^(j+1), {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
  • PARI
    {a(n)=local(A=sum(m=0,n^2+100,(1+x +O(x^(n+2)))^(m*(m+1)/2)/2^(m+1)));round(polcoeff(A,n))}

Formula

a(n) = A265937(n)/2. - Vaclav Kotesovec, Oct 08 2019
a(n) ~ 2^n * n^n / (2^(log(2)/4) * log(2)^(2*n+1) * exp(n)). - Vaclav Kotesovec, Oct 08 2019
a(n) = 2*A121251(n) for n > 0. - Andrew Howroyd, Jan 15 2020

A265936 G.f.: Sum_{n>=0} (1 + x)^(n^2) / 2^n.

Original entry on oeis.org

2, 6, 72, 1488, 43212, 1615824, 73897824, 3995603040, 249332628600, 17635891224600, 1394325697514112, 121850733102557184, 11663364820483368384, 1213527023075625127296, 136368036713802512640384, 16459661773011642351224832, 2123742016843422531580031760, 291703805646180152870305600416, 42495460119330209128505618419584, 6544578588779477399509681497008256, 1062399800520315889891506552001161024, 181308080907736435566683700136306288320
Offset: 0

Views

Author

Paul D. Hanna, Dec 23 2015

Keywords

Examples

			G.f.: A(x) = 2 + 6*x + 72*x^2 + 1488*x^3 + 43212*x^4 + 1615824*x^5 + 73897824*x^6 + 3995603040*x^7 + 249332628600*x^8 + 17635891224600*x^9 +...
where
A(x) = 1 + (1+x)/2 + (1+x)^4/2^2 + (1+x)^9/2^3 + (1+x)^16/2^4 + (1+x)^25/2^5 + (1+x)^36/2^6 + (1+x)^49/2^7 + (1+x)^64/2^8 +...+ (1+x)^(n^2)/2^n +...
		

Crossrefs

Programs

  • Mathematica
    Table[Round[Sum[Binomial[k^2, n]/2^k, {k, Sqrt[n], Infinity}]] , {n, 0, 20}] (* G. C. Greubel, May 23 2017 *)
    Table[2*Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -2*j, 0]/2, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Oct 08 2019 *)
  • PARI
    /* Informal listing of terms: */
    {Vec( round( sum(n=0,600,(1+x +O(x^31))^(n^2)/2^n * 1.) ) )}
    {Vec( round( sum(n=0,200, (1.+x)^n/2^n * prod(k=1,n, (2 - (1+x)^(4*k-3)) / (2 - (1+x)^(4*k-1)) +O(x^21) ) ) ) )}

Formula

G.f.: Sum_{n>=0} (1+x)^n/2^n * Product_{k=1..n} (2 - (1+x)^(4*k-3)) / (2 - (1+x)^(4*k-1)) due to a q-series identity.
G.f.: 1/(1 - (1+x)/2 /(1 - (1+x)*((1+x)^2-1)/2 /(1 - (1+x)^5/2 /(1 - (1+x)^3*((1+x)^4-1)/2 /(1 - (1+x)^9/2 /(1 - (1+x)^5*((1+x)^6-1)/2 /(1 - (1+x)^13/2 /(1 - (1+x)^7*((1+x)^8-1)/2 /(1 - ...))))))))), a continued fraction due to a partial elliptic theta function identity.
a(n) = Sum_{k>=sqrt(n)} binomial(k^2,n) / 2^k.
a(n) = Sum_{k=0..2*n} A303920(n,k) * 2^k, for n>0.
a(n) = 2 * A173217(n) for n>=0.
a(n) ~ 2^(2*n + 1/2 - log(2)/8) * n^n / (exp(n) * log(2)^(2*n + 1)). - Vaclav Kotesovec, Oct 08 2019
Showing 1-2 of 2 results.