cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A300050 G.f. A(x) satisfies: A(x) = Sum_{n>=0} (1 + x*A(x)^n)^n / 2^(n+1).

Original entry on oeis.org

1, 1, 4, 28, 250, 2558, 28594, 340486, 4255344, 55300776, 742732646, 10267434138, 145692400018, 2118364506746, 31529605958892, 480186833802260, 7483472464151002, 119397596900634238, 1951747376021480874, 32721008993895160926, 563260078608381337148, 9967709437187109520736, 181544883799333028286098, 3406426523158387599683478, 65894531117591548919270114
Offset: 0

Views

Author

Paul D. Hanna, Feb 27 2018

Keywords

Comments

Compare to: G(x) = Sum_{n>=0} (1 + x*G(x)^k)^n / 2^(n+1) holds when G(x) = 1 + x*G(x)^(k+1) for fixed k.

Examples

			G.f.: A(x) = 1 + x + 4*x^2 + 28*x^3 + 250*x^4 + 2558*x^5 + 28594*x^6 + 340486*x^7 + 4255344*x^8 + 55300776*x^9 + 742732646*x^10 + ...
such that
A(x) = 1/2 + (1 + x*A(x))/2^2 + (1 + x*A(x)^2)^2/2^3 + (1 + x*A(x)^3)^3/2^4 + (1 + x*A(x)^4)^4/2^5 + (1 + x*A(x)^5)^5/2^6 + (1 + x*A(x)^6)^6/2^7 + ...
Also, due to a series identity,
A(x) = 1 + x*A(x)/(2 - A(x))^2 + x^2*A(x)^4/(2 - A(x)^2)^3 + x^3*A(x)^9/(2 - A(x)^3)^4 + x^4*A(x)^16/(2 - A(x)^4)^5 + x^5*A(x)^25/(2 - A(x)^5)^6 + x^6*A(x)^36/(2 - A(x)^6)^7 + ... + x^n * A(x)^(n^2) / (2 - A(x)^n)^(n+1) + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1); for(i=0,n, A = sum(m=0,n, x^m * A^(m^2) / (2 - A^m + x*O(x^n))^(m+1) )); polcoeff(A,n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies:
(1) A(x) = Sum_{n>=0} (1 + x*A(x)^n)^n / 2^(n+1).
(2) A(x) = Sum_{n>=0} x^n * A(x)^(n^2) / (2 - A(x)^n)^(n+1).

A302765 Decimal expansion of constant: B = Sum_{n>=1} (-1)^(n-1) / (2^n - 1)^n.

Original entry on oeis.org

8, 9, 1, 7, 8, 4, 6, 2, 2, 6, 1, 0, 9, 5, 3, 3, 4, 9, 7, 1, 5, 8, 9, 0, 1, 3, 6, 0, 6, 0, 2, 3, 9, 4, 2, 1, 0, 2, 2, 2, 1, 6, 9, 7, 0, 3, 6, 6, 1, 3, 9, 1, 8, 9, 3, 3, 6, 8, 2, 2, 3, 6, 0, 1, 2, 7, 6, 1, 2, 2, 3, 7, 8, 1, 7, 5, 4, 4, 4, 5, 5, 8, 3, 9, 6, 7, 8, 6, 4, 6, 3, 8, 6, 1, 7, 6, 3, 7, 1, 0, 5, 7, 4, 3, 9, 0, 9, 3, 8, 3, 6, 1, 3, 9, 3, 4, 3, 9, 5, 9
Offset: 0

Views

Author

Paul D. Hanna, Apr 12 2018

Keywords

Examples

			Constant B = 0.891784622610953349715890136060239421022216970366139189336822360...
This constant equals the sum of the following infinite series.
(1) B = 1 - 1/3^2 + 1/7^3 - 1/15^4 + 1/31^5 - 1/63^6 + 1/127^7 - 1/255^8 + 1/511^9 - 1/1023^10 + 1/2047^11 - 1/4095^12 + 1/8191^13 - 1/16383^14 + ...
Also,
(2) B = 1/2 + 3/2^4 + 7^2/2^9 + 15^3/2^16 + 31^4/2^25 + 63^5/2^36 + 127^6/2^49 + 255^7/2^64 + 511^8/2^81 + 1023^9/2^100 + 2047^10/2^121 + 4095^11/2^144 + ...
Expressed in terms of powers of 1/2, we have
(3) B = 1/2 + 1/2^2 + 1/2^3 + 0/2^4 + 1/2^5 - 1/2^6 + 1/2^7 - 2/2^8 + 2/2^9 - 3/2^10 + 1/2^11 - 1/2^12 + 1/2^13 - 5/2^14 + 7/2^15 - 7/2^16 + 1/2^17 + 3/2^18 + 1/2^19 - 12/2^20 + 16/2^21 - 9/2^22 + ... + A303506(n)/2^n + ...
DECIMAL EXPANSION TO 1000 DIGITS:
B = 0.89178462261095334971589013606023942102221697036613\
91893368223601276122378175444558396786463861763710\
57439093836139343959699895448987622772561974889829\
69662500641670749267412176492387283639777757763274\
25544373227852142261116843917982062828561973242641\
82725879555976060428390970218640637206146898948643\
76158809108390913335032108295905030664382411547224\
65652844918843557563559576104945928523599994449875\
54216008705234822642417410437080548464100874227218\
61650525099561200582641085028403673931750929494032\
47382019920912650558684222318629979407415580585052\
58521100916256823999312185479604796455256751507361\
67292078514305809228767193192555896703488660216859\
38438297427435171546623099960570301622830302948131\
42393878925766586388132889946469804516455360827301\
15060737460971066848430279446396669771028830058957\
09040428237475226018628287375514768624454713520927\
57806744194504585813229218682951533161650254564160\
40305474360667599580582080941206432281172119508572\
24718465451691587123672187602470833897922105839762...
		

Crossrefs

Cf. A303340 (binary), A300279.

Programs

  • Mathematica
    digits = 120; B = NSum[(-1)^(n-1)/(2^n-1)^n, {n, 1, Infinity}, Method -> "AlternatingSigns", WorkingPrecision -> digits+5]; RealDigits[B, 10, digits][[1]] (* Jean-François Alcover, Apr 25 2018 *)
  • PARI
    suminf(n=1, (-1)^(n-1)/(2^n-1)^n) \\ Michel Marcus, Apr 25 2018

Formula

This constant may be defined by the following expressions.
(1) B = Sum_{n>=1} (-1)^(n-1) / (2^n - 1)^n.
(2) B = Sum_{n>=1} (2^n - 1)^(n-1) / 2^(n^2).
(3) B = Sum_{n>=1} A303506(n)/2^n where A303506(n) = Sum_{d|n} binomial(n/d-1, d-1) * (-1)^(d-1) for n>=1.

A300280 Triangle defined by T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1), for n>=0, k = 0..n, as read by rows.

Original entry on oeis.org

1, 0, 1, 0, 3, 1, 0, 5, 10, 1, 0, 7, 57, 21, 1, 0, 9, 252, 246, 36, 1, 0, 11, 969, 2158, 710, 55, 1, 0, 13, 3414, 15927, 10260, 1635, 78, 1, 0, 15, 11329, 104883, 122125, 35085, 3255, 105, 1, 0, 17, 35992, 637252, 1273192, 611130, 96992, 5852, 136, 1, 0, 19, 110625, 3647268, 12057412, 9199386, 2321004, 230972, 9756, 171, 1, 0, 21, 331298, 19935477, 106181320, 124315310, 47518716, 7261394, 492408, 15345, 210, 1, 0, 23, 971609, 105054633, 883422885, 1546241270, 865414802, 193797618, 19669302, 963795, 23045, 253, 1
Offset: 0

Views

Author

Paul D. Hanna, Mar 01 2018

Keywords

Comments

Is there a closed-form expression for the terms T(n,k) of this triangle?
Row sums form A300279, with g.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).

Examples

			This triangle begins:
1;
0, 1;
0, 3, 1;
0, 5, 10, 1;
0, 7, 57, 21, 1;
0, 9, 252, 246, 36, 1;
0, 11, 969, 2158, 710, 55, 1;
0, 13, 3414, 15927, 10260, 1635, 78, 1;
0, 15, 11329, 104883, 122125, 35085, 3255, 105, 1;
0, 17, 35992, 637252, 1273192, 611130, 96992, 5852, 136, 1;
0, 19, 110625, 3647268, 12057412, 9199386, 2321004, 230972, 9756, 171, 1;
0, 21, 331298, 19935477, 106181320, 124315310, 47518716, 7261394, 492408, 15345, 210, 1;
0, 23, 971609, 105054633, 883422885, 1546241270, 865414802, 193797618, 19669302, 963795, 23045, 253, 1; ...
GENERATING FUNCTIONS.
G.f.: A(x,y) = Sum_{n>=0} x^n*y^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1).
Expanding,
G.f.: A(x,y) = 1 + x*y*(1+x)/(2 - (1+x))^2 + x^2*y^2*(1+x)^4/(2 - (1+x)^2)^3 + x^3*y^3*(1+x)^9/(2 - (1+x)^3)^4 + x^4*y^4*(1+x)^16/(2 - (1+x)^4)^5 + x^5*y^5*(1+x)^25/(2 - (1+x)^5)^6 + x^6*y^6*(1+x)^36/(2 - (1+x)^6)^7 + ...
Also, due to a series identity:
A(x,y) = 1/2 + (1 + x*y*(1+x))/2^2 + (1 + x*y*(1+x)^2)^2/2^3 + (1 + x*y*(1+x)^3)^3/2^4 + (1 + x*y*(1+x)^4)^4/2^5 + (1 + x*y*(1+x)^5)^5/2^6 + (1 + x*y*(1+x)^6)^6/2^7 + ... + (1 + x*y * (1+x)^n)^n / 2^(n+1) + ...
Explicitly,
G.f.: A(x,y) = 1 + y*x + (y^2 + 3*y)*x^2 + (y^3 + 10*y^2 + 5*y)*x^3 + (y^4 + 21*y^3 + 57*y^2 + 7*y)*x^4 + (y^5 + 36*y^4 + 246*y^3 + 252*y^2 + 9*y)*x^5 + (y^6 + 55*y^5 + 710*y^4 + 2158*y^3 + 969*y^2 + 11*y)*x^6 + (y^7 + 78*y^6 + 1635*y^5 + 10260*y^4 + 15927*y^3 + 3414*y^2 + 13*y)*x^7 + (y^8 + 105*y^7 + 3255*y^6 + 35085*y^5 + 122125*y^4 + 104883*y^3 + 11329*y^2 + 15*y)*x^8 + ...
The row sums begin
A300279 = [1, 1, 4, 16, 86, 544, 3904, 31328, 276798, 2660564, ...],
and has g.f.: Sum_{n>=0} (1 + x*(1+x)^n)^n / 2^(n+1).
RELATED TRIANGLE.
The coefficients in 1/A(x,y) forms the triangle:
1;
0, -1;
0, -3, 0;
0, -5, -4, 0;
0, -7, -38, -4, 0;
0, -9, -208, -104, -4, 0;
0, -11, -884, -1336, -202, -4, 0;
0, -13, -3268, -12112, -4768, -332, -4, 0;
0, -15, -11098, -89540, -75532, -12520, -494, -4, 0; ...
		

Crossrefs

Cf. A300279 (row sums).

Programs

  • PARI
    /* Must set N to a large value for accuracy: */ N=10000;
    {T(n,k) = round( sum(j=0,N, binomial(j+k,k) * binomial((j+k)*k,n-k) / 2^(j+k+1)*1. ) )}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))
    
  • PARI
    /* Faster, without precision errors: */
    {T(n,k) = my(A = sum(m=0, n, x^m * y^m * (1+x + x*O(x^n))^(m^2) / (2 - (1+x + x*O(x^n))^m )^(m+1) )); polcoeff(polcoeff(A, n,x), k,y)}
    for(n=0,12, for(k=0,n, print1(T(n,k),", "));print(""))

Formula

T(n,k) = Sum_{j>=0} C(j+k, k) * C((j+k)*k, n-k) / 2^(j+k+1).
G.f. A(x,y) = Sum_{n>=0} Sum_{k=0..n} T(n,k) * x^n * y^k is given by:
(1) A(x,y) = Sum_{n>=0} (1 + x*y * (1+x)^n)^n / 2^(n+1).
(2) A(x,y) = Sum_{n>=0} x^n * y^n * (1+x)^(n^2) / (2 - (1+x)^n)^(n+1).
Showing 1-3 of 3 results.