A301311
G.f.: Sum_{n>=0} 2^n * (1-x)^(-n^2) / 3^(n+1).
Original entry on oeis.org
1, 10, 370, 22570, 1924270, 210821290, 28223418010, 4464779024650, 814901395935550, 168556843188104050, 38965275697707264970, 9955529477371346769010, 2785811940289987110605590, 847316256984037311888049090, 278329013908504193489288029090, 98197864581209379156337136722690, 37034491818759647215732974465421990, 14868275488492647637389364332301206490
Offset: 0
G.f.: A(x) = 1 + 10*x + 370*x^2 + 22570*x^3 + 1924270*x^4 + 210821290*x^5 + 28223418010*x^6 + 4464779024650*x^7 + 814901395935550*x^8 + ...
such that
A(x) = 1/3 + 2/(1-x)/3^2 + 2^2/(1-x)^4/3^3 + 2^3/(1-x)^9/3^4 + 2^4/(1-x)^16/3^5 + 2^5/(1-x)^25/3^6 + 2^6/(1-x)^36/3^7 + 2^7/(1-x)^49/3^8 + 2^8/(1-x)^64/3^9 + ...
-
/* Continued fraction expression: */
{a(n) = my(CF=1, q = 1/(1-x +x*O(x^n))); for(k=0, n, CF = 1/(3 - 2*q^(4*n-4*k+1)/(1 - 2*q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
for(n=0, 30, print1(a(n), ", "))
A301312
G.f.: Sum_{n>=0} ( (1+x)^n + (1+2*x)^n )^n / 3^(n+1).
Original entry on oeis.org
1, 15, 818, 75237, 9704172, 1610219061, 326647152627, 78322576680405, 21671112063131181, 6796070676619188507, 2382079473846244973676, 922852837565535061715211, 391585126460697011112411576, 180608810765895380940822677853, 89966485333525032479641295540142, 48135006154108946423894447901622257, 27530139433795469892705229664410072563, 16761420605156187498505881406969283279001
Offset: 0
G.f.: A(x) = 1 + 15*x + 818*x^2 + 75237*x^3 + 9704172*x^4 + 1610219061*x^5 + 326647152627*x^6 + 78322576680405*x^7 + 21671112063131181*x^8 + ...
such that
A(x) = 1/3 + ((1+x) + (1+2*x))/3^2 + ((1+x)^2 + (1+2*x)^2)^2/3^3 + ((1+x)^3 + (1+2*x)^3)^3/3^4 + ((1+x)^4 + (1+2*x)^4)^4/3^5 + ((1+x)^5 + (1+2*x)^5)^5/3^6 + ... + ((1+x)^n + (1+2*x)^n)^n / 3^(n+1) + ...
Equivalently,
A(x) = 1/3 + (2 + 3*x)/3^2 + (2 + 6*x + 5*x^2)^2/3^3 + (2 + 9*x + 15*x^2 + 9*x^3)^3/3^4 + (2 + 12*x + 30*x^2 + 36*x^3 + 17*x^4)^4/3^5 + (2 + 15*x + 50*x^2 + 90*x^3 + 85*x^4 + 33*x^5)^5/3^6 + ...
A301466
a(n) = Sum_{k>=0} binomial(k^3, n)/2^(k+1).
Original entry on oeis.org
1, 13, 2335, 1178873, 1168712311, 1916687692685, 4697337224419543, 16082097033630615185, 73313708225823014181097, 429319086610079876821621425, 3140585308524019620784003889263, 28066697522114849327295724261347841, 300886927215791917153044786581553617063
Offset: 0
-
Table[Sum[Binomial[k^3, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 15}]
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -3*j, 0]/2, {j, 0, n}] / n!, {n, 0, 15}]
A301432
G.f.: Sum_{n>=0} 3^n * (1+x)^(n^2) / 4^(n+1).
Original entry on oeis.org
1, 21, 1512, 182448, 30845052, 6706403424, 1782361433664, 559861341721920, 202922346528231120, 83358099246202940880, 38271708686845732234752, 19421327571536329073316864, 10794249397953336851774993664, 6521104275997643157262604783616, 4254768377324045826054766465227264, 2981719456871640091643441908508931072
Offset: 0
G.f.: A(x) = 1 + 21*x + 1512*x^2 + 182448*x^3 + 30845052*x^4 + 6706403424*x^5 + 1782361433664*x^6 + 559861341721920*x^7 + ...
such that
A(x) = 1/4 + 3*(1+x)/4^2 + 3^2*(1+x)^4/4^3 + 3^3*(1+x)^9/4^4 + 3^4*(1+x)^16/4^5 + 3^5*(1+x)^25/4^6 + 3^6*(1+x)^36/4^7 + 3^7*(1+x)^49/4^8 + 3^8*(1+x)^64/4^9 + ...
-
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[3/4, -2*j, 0]/4, {j, 0, n}] / n!, {n, 0, 20}] (* Vaclav Kotesovec, Mar 21 2018 *)
-
/* Continued fraction expression: */
{a(n) = my(CF=1, q = 1+x +x*O(x^n)); for(k=0, n, CF = 1/(4 - 3*q^(4*n-4*k+1)/(1 - 3*q^(2*n-2*k+1)*(q^(2*n-2*k+2) - 1)*CF)) ); polcoeff(CF, n)}
for(n=0, 30, print1(a(n), ", "))
A301468
a(n) = Sum_{k>=0} binomial(k^4, n)/2^(k+1).
Original entry on oeis.org
1, 75, 272880, 4681655040, 221478589107480, 22313622005672849712, 4108665216956980742226192, 1249503956658157724969373808320, 583952821303314451291898006535866460, 397372225886096887788939487944785734626120, 377577476850495509525002042506806447493291890064
Offset: 0
-
Table[Sum[Binomial[k^4, n]/2^(k+1), {k, 0, Infinity}], {n, 0, 12}]
Table[Sum[StirlingS1[n, j] * HurwitzLerchPhi[1/2, -4*j, 0]/2, {j, 0, n}] / n!, {n, 0, 12}]
Showing 1-5 of 5 results.
Comments