cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A005993 Expansion of (1+x^2)/((1-x)^2*(1-x^2)^2).

Original entry on oeis.org

1, 2, 6, 10, 19, 28, 44, 60, 85, 110, 146, 182, 231, 280, 344, 408, 489, 570, 670, 770, 891, 1012, 1156, 1300, 1469, 1638, 1834, 2030, 2255, 2480, 2736, 2992, 3281, 3570, 3894, 4218, 4579, 4940, 5340, 5740, 6181, 6622, 7106, 7590, 8119, 8648, 9224, 9800
Offset: 0

Views

Author

N. J. A. Sloane, Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

Alkane (or paraffin) numbers l(6,n).
Dimension of the space of homogeneous degree n polynomials in (x1, y1, x2, y2) invariant under permutation of variables x1<->y1, x2<->y2.
Also multidigraphs with loops on 2 nodes with n arcs (see A138107). - Vladeta Jovovic, Dec 27 1999
Euler transform of finite sequence [2,3,0,-1]. - Michael Somos, Mar 17 2004
a(n-2) is the number of plane partitions with trace 2. - Michael Somos, Mar 17 2004
With offset 4, a(n) is the number of bracelets with n beads, 3 of which are red, 1 of which is blue. For odd n, a(n) = C(n-1,3)/2. For even n, a(n) = C(n-1,3)/2 +(n-2)/4. For n >= 6, with K = (n-1)(n-2)/((n-5)(n-4)), for odd n, a(n) = K*a(n-2). For even n, a(n) = K*a(n-2) -(n-2)/(n-5). - Washington Bomfim, Aug 05 2008
Equals (1,2,3,4,...) convolved with (1,0,3,0,5,...). - Gary W. Adamson, Feb 16 2009
Equals row sums of triangle A177878.
Equals (1/2)*((1, 4, 10, 20, 35, 56, ...) + (1, 0, 2 0, 3, 0, 4, ...)).
From Ctibor O. Zizka, Nov 21 2014: (Start)
With offset 4, a(n) is the number of different patterns of the 2-color 4-partition of n.
P(n)_(k;t) gives the number of different patterns of the t-color, k-partition of n.
P(n;i;j) = Sum(r=1..m) c_(i,j)*v_r*F_r(X_1,...,X_i).
m partition number of i.
c_(i,j) number of different coloring patterns on the r-th form (X_1,...,X_i) of i-partition with j-colors.
v_r number of i-partitions of n of the r-th form (X_1,...,X_i).
F_r(X_1,...,X_i) number of different patterns of the r-th form i-partition of n.
Some simple results:
P(1)(k;t)=1, P(2)(k;t)=2, P(3)(k;t)=4, P(4)(k;t)=11, etc.
P(n;1;1) = P(n;n;n) = 1 for all n;
P(n;2;2) = floor(n/2) (A004526);
P(n;3;2) = (n*n - 2*n + n mod 2)/4 (A002620).
This sequence is a(n) = P(n;4;2).
2-coloring of 4-partition is (A,B,A,B) or (B,A,B,A).
Each 4-partition of n has one of the form (X_1,X_1,X_1,X_1),(X_1,X_1,X_1,X_2), (X_1,X_1,X_2,X_2),(X_1,X_1,X_2,X_3),(X_1,X_2,X_3,X_4).
The number of forms is m=5 which is the partition number of k=4.
Partition form (X_1,X_1,X_1,X_1) gives 1 pattern ((X_1A,X_1B,X_1A,X_1B), (X_1,X_1,X_1,X_2) gives 2 patterns, (X_1,X_1,X_2,X_2) gives 4 patterns, (X_1,X_1,X_2,X_3) gives 6 patterns and (X_1,X_2,X_3,X_4) gives 12 patterns.
Thus a(n) = P(n;4;2) = 1*1*v_1 + 1*2*v_2 + 1*4*v_3 + 1*6*v_4 + 1*12*v_5 where v_r is the number of different 4-partitions of the r-th form (X_1,X_2,X_3,X_4) for a given n.
Example:
The 4-partitions of 8 are (2,2,2,2), (1,1,1,5), (1,1,3,3), (1,1,2,4), and (1,2,2,3):
(2,2,2,2) 1 pattern
(1,1,1,5), (1,1,5,1) 2 patterns
(1,1,3,3), (1,3,3,1), (3,1,1,3), (1,3,1,3) 4 patterns
(1,1,2,4), (1,1,4,2), (1,2,1,4), (1,2,4,1), (1,4,1,2), (2,1,1,4) 6 patterns
(2,2,1,3), (2,2,3,1), (2,1,2,3), (2,1,3,2), (2,3,2,1), (1,2,2,3) 6 patterns
Thus a(8) = P(8,4,2) = 1 + 2 + 4 + 6 + 6 = 19. (End)
a(n) = length of run n+2 of consecutive 1's in A254338. - Reinhard Zumkeller, Feb 27 2015
Take a chessboard of (n+2) X (n+2) unit squares in which the a1 square is black. a(n) is the number of composite squares having black unit squares on their vertices. - Ivan N. Ianakiev, Jul 19 2018
a(n) is the number of 1423-avoiding odd Grassmannian permutations of size n+2. Avoiding any of the patterns 2314 or 3412 gives the same sequence. - Juan B. Gil, Mar 09 2023

Examples

			a(2) = 6, since ( x1*y1, x2*y2, x1*x1+y1*y1, x2*x2+y2*y2, x1*x2+y1*y2, x1*y2+x2*y1 ) are a basis for homogeneous quadratic invariant polynomials.
		

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • L. Smith, Polynomial Invariants of Finite Groups, A K Peters, 1995, p. 96.

Crossrefs

Cf. A177878.
Partial sums of A008794 (without 0). - Bruno Berselli, Aug 30 2013

Programs

  • Haskell
    Following Gary W. Adamson.
    import Data.List (inits, intersperse)
    a005993 n = a005994_list !! n
    a005993_list = map (sum . zipWith (*) (intersperse 0 [1, 3 ..]) . reverse) $
                       tail $ inits [1..]
    -- Reinhard Zumkeller, Feb 27 2015
    
  • Magma
    I:=[1,2,6,10,19,28]; [n le 6 select I[n] else 2*Self(n-1)+Self(n-2)-4*Self(n-3)+Self(n-4)+2*Self(n-5)-Self(n-6): n in [1..60]]; // Vincenzo Librandi, Jul 19 2015
    
  • Maple
    g := proc(n) local i; add(floor(i/2)^2,i=1..n+1) end: # Joseph S. Riel (joer(AT)k-online.com), Mar 22 2002
    a:= n-> (Matrix([[1, 0$3, -1, -2]]).Matrix(6, (i,j)-> if (i=j-1) then 1 elif j=1 then [2, 1, -4, 1, 2, -1][i] else 0 fi)^n)[1,1]; seq (a(n), n=0..44); # Alois P. Heinz, Jul 31 2008
  • Mathematica
    CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^2)^2),{x,0,44}],x]  (* Jean-François Alcover, Apr 08 2011 *)
    LinearRecurrence[{2,1,-4,1,2,-1},{1,2,6,10,19,28},50] (* Harvey P. Dale, Feb 20 2012 *)
  • PARI
    a(n)=polcoeff((1+x^2)/(1-x)^2/(1-x^2)^2+x*O(x^n),n)
    
  • PARI
    a(n) = (binomial(n+3, n) + (1-n%2)*binomial((n+2)/2, n>>1))/2 \\ Washington Bomfim, Aug 05 2008
    
  • PARI
    a = vector(50); a[1]=1; a[2]=2;
    for(n=3, 50, a[n] = ((n+2)*a[n-2]+2*a[n-1]-n)/(n-2)); a \\ Gerry Martens, Jun 03 2018
    
  • Sage
    def A005993():
        a, b, to_be = 0, 0, True
        while True:
            yield (a*(a*(2*a+9)+13)+b*(b+1)*(2*b+1)+6)//6
            if to_be: b += 1
            else: a += 1
            to_be = not to_be
    a = A005993()
    [next(a) for  in range(48)] # _Peter Luschny, May 04 2016

Formula

l(c, r) = 1/2 C(c+r-3, r) + 1/2 d(c, r), where d(c, r) is C((c + r - 3)/2, r/2) if c is odd and r is even, 0 if c is even and r is odd, C((c + r - 4)/2, r/2) if c is even and r is even, C((c + r - 4)/2, (r - 1)/2) if c is odd and r is odd.
G.f.: (1+x^2)/((1-x)^2*(1-x^2)^2) = (1+x^2)/((1+x)^2*(x-1)^4) = (1/(1-x)^4 +1/(1-x^2)^2)/2.
a(2n) = (n+1)(2n^2+4n+3)/3, a(2n+1) = (n+1)(n+2)(2n+3)/3. a(-4-n) = -a(n).
From Yosu Yurramendi, Sep 12 2008: (Start)
a(n+1) = a(n) + A008794(n+3) with a(1)=1.
a(n) = A027656(n) + 2*A006918(n).
a(n+2) = a(n) + A000982(n+2) with a(1)=1, a(2)=2. (End)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6). - Jaume Oliver Lafont, Dec 05 2008
a(n) = (n^3 + 6*n^2 + 11*n + 6)/12 + ((n+2)/4)[n even] (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012
a(n) = (1/12)*n*(n+1)*(n+2) + (1/4)*(n+1)*(1/2)*(1-(-1)^n), with offset 1. - Yosu Yurramendi, Jun 20 2013
a(n) = Sum_{i=0..n+1} ceiling(i/2) * round(i/2) = Sum_{i=0..n+2} floor(i/2)^2. - Bruno Berselli, Aug 30 2013
a(n) = (n + 2)*(3*(-1)^n + 2*n^2 + 8*n + 9)/24. - Ilya Gutkovskiy, May 04 2016
Recurrence formula: a(n) = ((n+2)*a(n-2)+2*a(n-1)-n)/(n-2), a(1)=1, a(2)=2. - Gerry Martens, Jun 10 2018
E.g.f.: exp(-x)*(6 - 3*x + exp(2*x)*(18 + 39*x + 18*x^2 + 2*x^3))/24. - Stefano Spezia, Feb 23 2020
a(n) = Sum_{j=0..n/2} binomial(c+2*j-1,2*j)*binomial(c+n-2*j-1,n-2*j) where c=2. For other values of c we have: A008619 (c=1), A005995 (c=3), A018211 (c=4), A018213 (c=5), A062136 (c=6). - Miquel A. Fiol, Sep 24 2024

A052171 Number of directed multigraphs with loops on an infinite set of nodes containing a total of n arcs.

Original entry on oeis.org

1, 2, 11, 52, 296, 1724, 11060, 74527, 533046, 3999187, 31412182, 257150093, 2188063401, 19299062896, 176059781439, 1657961491087, 16089088019098, 160643776819423, 1648068916722737, 17351137043998280, 187255329043638437, 2069426416836401375, 23397468305569068113, 270406562951254606048, 3191908298072118225550, 38454691427657997701136
Offset: 0

Views

Author

Vladeta Jovovic, Jan 26 2000

Keywords

Comments

Row sums of A136564, limiting values of A138107. - Benoit Jubin, May 13 2008
Euler transform of A137975. - M. F. Hasler, Jul 31 2017

Crossrefs

Cf. A104209. Cf. A137975 (connected).

Formula

a(n) = A138107(2*n,n). - Max Alekseyev, Oct 17 2017

Extensions

a(16)-a(25) from Max Alekseyev, Jun 21 2011

A136564 Array read by rows: T(n,k) is the number of directed multigraphs with loops with n arcs, k vertices, and no vertex of degree 0.

Original entry on oeis.org

1, 1, 1, 5, 4, 1, 1, 9, 21, 16, 4, 1, 1, 18, 71, 108, 71, 22, 4, 1, 1, 27, 194, 491, 557, 326, 101, 22, 4, 1, 1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1, 1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1, 1, 84, 2095, 18823, 72064
Offset: 1

Views

Author

Benoit Jubin, Apr 14 2008

Keywords

Comments

Length of the n^th row: 2n.

Examples

			1, 1;
1, 5, 4, 1;
1, 9, 21, 16, 4, 1;
1, 18, 71, 108, 71, 22, 4, 1;
1, 27, 194, 491, 557, 326, 101, 22, 4, 1;
1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1;
1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1;
		

Crossrefs

Row sums: A052171. Partial row sums: A138107.
Sums of the first m entries of each row: A005993 (m=2), A050927 (m=3), A050929 (m=4).

Formula

T(n,1) = 1 if n > 0.
T(n,2n) = 1 if n > 0.
T(n,2n-1) = 4 if n >= 2.
T(n,2n-k) = A144047(k) for n large enough (conjecturally, n >= 2k is enough).
T(n,2) = (n^3 + 6*n^2 + 11*n - 6)/12 + ((n+2)/4)[n even]. (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012

Extensions

More terms from Benoit Jubin and Vladeta Jovovic, Sep 08 2008

A290428 Array read by antidiagonals: T(n,k) is the number of graphs with n edges and k vertices, allowing loops and multi-edges.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 4, 1, 0, 1, 2, 6, 6, 1, 0, 1, 2, 7, 14, 9, 1, 0, 1, 2, 7, 20, 28, 12, 1, 0, 1, 2, 7, 22, 53, 52, 16, 1, 0, 1, 2, 7, 23, 69, 125, 93, 20, 1, 0, 1, 2, 7, 23, 76, 198, 287, 152, 25, 1, 0, 1, 2, 7, 23, 78, 245, 550, 606, 242, 30, 1, 0
Offset: 0

Views

Author

R. J. Mathar, Jul 31 2017

Keywords

Comments

Variant of A138107, here for non-directed edges.

Examples

			1   1   1   1    1    1    1   1   1...
0   1   2   2    2    2    2   2   2...
0   1   4   6    7    7    7   7   7...
0   1   6  14   20   22   23  23  23...
0   1   9  28   53   69   76  78  79...
0   1  12  52  125  198  245 264 271...
0   1  16  93  287  550  782 915 973...
0   1  20 152  606 1441 2392
0   1  25 242 1226 3611
		

Crossrefs

Cf. A050531 (column 3), A050532 (column 4), A138107, A098568 (vertex-labeled).

Programs

  • Mathematica
    rows = 12;
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]] ]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c + 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    col[k_] := col[k] = Module[{s = O[x]^rows}, Do[s += permcount[p]*1/edges[p, 1 - x^# + O[x]^rows&], {p, IntegerPartitions[k]}]; s/k!] // CoefficientList[#, x]&;
    T[0, ] = 1; T[, 0] = 0;
    T[n_, k_] := col[k][[n + 1]];
    Table[T[n-k, k], {n, 0, rows-1}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
    T(m, n=m) = {Mat(vector(n+1, n, my(s=O(x*x^m)); forpart(p=n-1, s+=permcount(p)*1/edges(p,i->1-x^i+O(x*x^m))); Col(s/(n-1)!)))}
    { my(A=T(8)); for(n=1, #A, print(A[n,])) } \\ Andrew Howroyd, Oct 22 2019

A214398 Triangle where the g.f. of column k is 1/(1-x)^(k^2) for k>=1, as read by rows n>=1.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 9, 1, 1, 20, 45, 16, 1, 1, 35, 165, 136, 25, 1, 1, 56, 495, 816, 325, 36, 1, 1, 84, 1287, 3876, 2925, 666, 49, 1, 1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1, 1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1, 1, 220, 12870, 170544
Offset: 1

Views

Author

Paul D. Hanna, Jul 15 2012

Keywords

Comments

This is also the array A(n,k) read upwards antidiagonals, where the entry in row n and column k counts the vertex-labeled digraphs with n arcs and k vertices, allowing multi-edges and multi-loops (labeled analog to A138107). The binomial formula counts the weak compositions of distributing n arcs over the k^2 positions in the adjacency matrix. - R. J. Mathar, Aug 03 2017

Examples

			Triangle begins:
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1;
1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1;
1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1;
1, 220, 12870, 170544, 593775, 658008, 270725, 45760, 3321, 100, 1; ...
		

Crossrefs

Cf. A214400 (central terms), A178325 (row sums), A054688, A000290 (1st subdiagonal), A037270 (2nd subdiagonal).
Cf. A230049.

Programs

  • Maple
    A214398 := proc(n,k)
        binomial(k^2+n-k-1,n-k) ;
    end proc:
    seq(seq(A214398(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 03 2017
  • Mathematica
    nmax = 11;
    T[n_, k_] := SeriesCoefficient[1/(1-x)^(k^2), {x, 0, n-k}];
    Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten
  • PARI
    T(n,k)=binomial(k^2+n-k-1,n-k)
    for(n=1,11,for(k=1,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = binomial(k^2+n-k-1, n-k).
Row sums form A178325.
Central terms form A214400.
T(n,n-2) = A037270(n-2). - R. J. Mathar, Aug 03 2017
T(n,n-3) = (n^2-6*n+11)*(n^2-6*n+10)*(n-3)^2 /6. - R. J. Mathar, Aug 03 2017

A050927 Number of directed multigraphs with loops on 3 nodes with n arcs.

Original entry on oeis.org

1, 2, 10, 31, 90, 222, 520, 1090, 2180, 4090, 7356, 12660, 21105, 34020, 53460, 81891, 122826, 180510, 260746, 370370, 518518, 715870, 976170, 1315470, 1753975, 2314936, 3027224, 3923845, 5044920, 6436200, 8152542, 10255896
Offset: 0

Views

Author

Vladeta Jovovic, Dec 30 1999

Keywords

Crossrefs

Column k=3 of A138107.
Cf. A005993.

Programs

  • Mathematica
    < 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)
    CoefficientList[Series[(x^10 + 3 x^8 + 10 x^7 + 16 x^6 + 12 x^5 + 16 x^4 + 10 x^3 + 3 x^2 + 1)/((1 - x^3)^3 (1 - x^2)^4 (1 - x)^2), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 08 2015 *)
  • PARI
    Vec((1 + 3*x^2 + 10*x^3 + 16*x^4 + 12*x^5 + 16*x^6 + 10*x^7 + 3*x^8 + x^10)/((1 - x)^2*(1 - x^2)^4*(1 - x^3)^3) + O(x^40)) \\ Andrew Howroyd, Mar 16 2020

Formula

G.f.: (x^10+3*x^8+10*x^7+16*x^6+12*x^5+16*x^4+10*x^3+3*x^2+1) / ((1-x^3)^3*(1-x^2)^4*(1-x)^2).

A050929 Number of directed multigraphs with loops on 4 nodes with n arcs.

Original entry on oeis.org

1, 2, 11, 47, 198, 713, 2423, 7388, 21003, 55433, 137944, 324659, 729022, 1567139, 3242954, 6479759, 12547894, 23607614, 43267994, 77405064, 135435666, 232137202, 390371944, 644897542, 1047890293, 1676518363, 2643628813
Offset: 0

Views

Author

Vladeta Jovovic, Dec 30 1999

Keywords

Crossrefs

Column k=4 of A138107.
Cf. A005993.

Programs

  • Maple
    gf:= (x^26-x^25 + 4*x^24 + 18*x^23 + 63*x^22 + 151*x^21 + 402*x^20 + 790*x^19 + 1511*x^18 + 2353*x^17 + 3400*x^16 + 4296*x^15 + 5115*x^14 + 5266*x^13 + 5115*x^12 + 4296*x^11 + 3400*x^10 + 2353*x^9 + 1511*x^8 + 790*x^7 + 402*x^6 + 151*x^5 + 63*x^4 + 18*x^3 + 4*x^2-x + 1)/((x^4-1)^4*(x^3-1)^5*(x^2-1)^4*(x-1)^3):
    S:= series(gf,x,101):
    seq(coeff(S,x,j),j=0..100); # Robert Israel, Aug 07 2015
  • Mathematica
    nn = 30; n = 4; CoefficientList[Series[CycleIndex[ Join[PairGroup[SymmetricGroup[n], Ordered], Permutations[Range[n*(n - 1) + 1, n*(n - 1) + n]], 2], s] /. Table[s[i] -> 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015*)

Formula

G.f.: (x^26-x^25 + 4*x^24 + 18*x^23 + 63*x^22 + 151*x^21 + 402*x^20 + 790*x^19 + 1511*x^18 + 2353*x^17 + 3400*x^16 + 4296*x^15 + 5115*x^14 + 5266*x^13 + 5115*x^12 + 4296*x^11 + 3400*x^10 + 2353*x^9 + 1511*x^8 + 790*x^7 + 402*x^6 + 151*x^5 + 63*x^4 + 18*x^3 + 4*x^2-x + 1)/((x^4-1)^4*(x^3-1)^5*(x^2-1)^4*(x-1)^3).

A333361 Array read by antidiagonals: T(n,k) is the number of directed loopless multigraphs with n arcs and k vertices.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 5, 2, 0, 0, 1, 1, 6, 10, 3, 0, 0, 1, 1, 6, 20, 24, 3, 0, 0, 1, 1, 6, 23, 69, 42, 4, 0, 0, 1, 1, 6, 24, 110, 196, 83, 4, 0, 0, 1, 1, 6, 24, 126, 427, 554, 132, 5, 0, 0, 1, 1, 6, 24, 129, 603, 1681, 1368, 222, 5, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2020

Keywords

Examples

			==================================================
n\k | 0 1 2   3    4     5     6      7      8
----+---------------------------------------------
  0 | 1 1 1   1    1     1     1      1      1 ...
  1 | 0 0 1   1    1     1     1      1      1 ...
  2 | 0 0 2   5    6     6     6      6      6 ...
  3 | 0 0 2  10   20    23    24     24     24 ...
  4 | 0 0 3  24   69   110   126    129    130 ...
  5 | 0 0 3  42  196   427   603    668    684 ...
  6 | 0 0 4  83  554  1681  2983   3811   4116 ...
  7 | 0 0 4 132 1368  5881 13681  20935  24979 ...
  8 | 0 0 5 222 3240 19448 59680 112943 154504 ...
  ...
		

Crossrefs

Programs

  • PARI
    \\ here G(k,x) gives column k as rational function.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n, ]))}

Formula

T(n,k) = A052170(n) for k >= 2*n.

A129620 Square array read by falling antidiagonals: T(n,k) is the number of connected directed multigraphs with loops with n arcs and at most k vertices.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 5, 1, 0, 1, 2, 8, 9, 1, 0, 1, 2, 8, 24, 17, 1, 0, 1, 2, 8, 32, 74, 26, 1, 0, 1, 2, 8, 32, 140, 189, 41, 1, 0, 1, 2, 8, 32, 167, 542, 460, 57, 1, 0, 1, 2, 8, 32, 167, 837, 1964, 989, 81, 1, 0, 1, 2, 8, 32, 167, 928, 4167, 6291, 2021, 106, 1, 0
Offset: 0

Views

Author

Benoit Jubin, May 06 2008

Keywords

Comments

Partial sums of the rows of A139621, i.e., T(n,k) = sum(A139621(n,p),p=0..k).

Examples

			1  1  1  1  1  1  ...
0  1  2  2  2  2  ...
0  1  5  8  8  8  ...
0  1  9 24 32 32  ...
0  1  17  (...)
(...)
		

Crossrefs

Formula

T(n,2) = A138107(n,2) - floor(n/2).
If k >= n+1, T(n,k) = A137975(n).

Extensions

Name edited by M. F. Hasler, Jul 31 2017
Terms a(32) and beyond from Andrew Howroyd, Oct 22 2019

A143841 Table read by antidiagonals: T(n,k) is the number of strongly connected directed multigraphs with loops with n arcs and up to k vertices.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 4, 7, 1, 0, 1, 1, 2, 4, 11, 11, 1, 0, 1, 1, 2, 4, 12, 30, 20, 1, 0, 1, 1, 2, 4, 12, 36, 93, 29, 1, 0, 1, 1, 2, 4, 12, 37, 152, 237, 45, 1, 0, 1, 1, 2, 4, 12, 37, 161, 587, 579, 61, 1, 0
Offset: 0

Views

Author

Benoit Jubin, Sep 02 2008

Keywords

Examples

			Array begins:
=============================================
n\k | 0 1  2   3    4    5    6    7    8
----+----------------------------------------
  0 | 1 1  1   1    1    1    1    1    1 ...
  1 | 0 1  1   1    1    1    1    1    1 ...
  2 | 0 1  2   2    2    2    2    2    2 ...
  3 | 0 1  3   4    4    4    4    4    4 ...
  4 | 0 1  7  11   12   12   12   12   12 ...
  5 | 0 1 11  30   36   37   37   37   37 ...
  6 | 0 1 20  93  152  161  162  162  162 ...
  7 | 0 1 29 237  587  725  737  738  738 ...
  8 | 0 1 45 579 2249 3610 3911 3927 3928 ...
  ...
		

Crossrefs

Partial sums of the rows of A139622.
Main diagonal is A139627.

Programs

  • PARI
    \\ See PARI link in A350489 for program code.
    A(n)={my(data=A139622rows(n), M=matrix(n+1, n+1, i, j, if(i==1, 1, sum(k=1, min(i-1,j-1), data[i-1][k])))); M}
    { my(M=A(8)); for(n=1, #M~, print(M[n,])) } \\ Andrew Howroyd, Jan 14 2022

Formula

T(n,k) = Sum_{p=0..k} A139622(n,p).
T(n,k) = A139627(n) for k >= n.
T(n,2) = A129620(n,2) - n*(n-1)/2.

Extensions

Name clarified and terms a(32) and beyond from Andrew Howroyd, Jan 14 2022
Showing 1-10 of 13 results. Next