cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A138107 Infinite square array: T(n,k) = number of directed multigraphs with loops with n arcs and k vertices; read by falling antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 6, 1, 0, 1, 2, 10, 10, 1, 0, 1, 2, 11, 31, 19, 1, 0, 1, 2, 11, 47, 90, 28, 1, 0, 1, 2, 11, 51, 198, 222, 44, 1, 0, 1, 2, 11, 52, 269, 713, 520, 60, 1, 0, 1, 2, 11, 52, 291, 1270, 2423, 1090, 85, 1, 0, 1, 2, 11, 52, 295, 1596, 5776, 7388, 2180, 110, 1, 0
Offset: 0

Views

Author

Benoit Jubin, May 03 2008

Keywords

Comments

Partial sums of the rows of A136564.

Examples

			The array begins:
   1, 1,   1,    1,     1,     1,     1,     1,     1, ...
   0, 1,   2,    2,     2,     2,     2,     2,     2, ...
   0, 1,   6,   10,    11,    11,    11,    11,    11, ...
   0, 1,  10,   31,    47,    51,    52,    52,    52, ...
   0, 1,  19,   90,   198,   269,   291,   295,   296,  296, ...
   0, 1,  28,  222,   713,  1270,  1596,  1697,  1719, 1723, ...
   0, 1,  44,  520,  2423,  5776,  8838, 10425, 10922, ...
   0, 1,  60, 1090,  7388, 24032, 46384, ...
   0, 1,  85, 2180, 21003, 93067, ...
   0, 1, 110, 4090, ...
   ...
		

Crossrefs

Columns k=0..4 are: A000007, A000012, A005993, A050927, A050929.
Main diagonal is A362387.

Programs

  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n,]))} \\ Andrew Howroyd, Oct 22 2019

Formula

T(n,k) = Sum_{p=0..k} A136564(n,p).
If k >= 2n, T(n,k) = A052171(n).

Extensions

More terms from Vladeta Jovovic and Benoit Jubin, Sep 10 2008

A037240 Molien series for 3-D group X1.

Original entry on oeis.org

1, 1, 5, 10, 24, 42, 83, 132, 222, 335, 511, 728, 1047, 1428, 1956, 2586, 3414, 4389, 5638, 7084, 8888, 10966, 13494, 16380, 19841, 23751, 28371, 33566, 39616, 46376, 54177, 62832, 72726, 83661, 96045, 109668, 124999, 141778, 160538, 181006, 203742, 228459, 255788, 285384
Offset: 0

Views

Author

Keywords

Comments

Also multidigraphs with 3 nodes and n arcs. - Vladeta Jovovic, Dec 27 1999
Also preference profiles with 3 alternatives and n agents (IANC model). - Alexander Karpov, Nov 23 2017

Crossrefs

Column k=3 of A333361.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1 +x^2 +3*x^3 +5*x^4 +x^5 +x^6)/((1-x)*(1-x^2)^3*(1-x^3)^2) )); // G. C. Greubel, Jan 31 2020
    
  • Maple
    S:= series((1+x^2+3*x^3+5*x^4+x^5+ x^6)/(1 - x)/(1 - x^2)^3/(1 - x^3)^2, x, 101):
    seq(coeff(S,x,n),n=0..100); # Robert Israel, Nov 22 2017
  • Mathematica
    CoefficientList[Series[(1 +x^2 +3x^3 +5x^4 +x^5 +x^6)/(1-x)/(1-x^2)^3/(1-x^3)^2, {x, 0, 43}], x] (* Michael De Vlieger, Nov 01 2017 *)
  • PARI
    Vec((1+x^2+3*x^3+5*x^4+x^5+x^6)/(1-x)/(1-x^2)^3/(1-x^3)^2 + O(x^50)) \\ Michel Marcus, Oct 31 2017
    
  • Sage
    def A037240_list(prec):
        P. = PowerSeriesRing(ZZ, prec)
        return P( (1+x^2+3*x^3+5*x^4+x^5+x^6)/((1-x)*(1-x^2)^3*(1-x^3)^2) ).list()
    A037240_list(50) # G. C. Greubel, Jan 31 2020

Formula

G.f.: (1 + x^2 + 3*x^3 + 5*x^4 + x^5 + x^6)/((1 - x)*(1 - x^2)^3*(1 - x^3)^2).
From Alexander Karpov, Nov 18 2017: (Start)
if n == 0 mod 6, a(n) = C(n+5,5)/6 + (n+4)*(n+2)/16 + (n+3)/9;
if n == 3 mod 6, a(n) = C(n+5,5)/6 + (n+3)/9;
if n == 2,4 mod 6, a(n) = C(n+5,5)/6 + (n+4)*(n+2)/16;
if n == 1,5 mod 6, a(n) = C(n+5,5)/6.
(End)

Extensions

Terms a(35) and beyond from Alexander Karpov, Oct 29 2017

A052170 Number of directed loopless multigraphs with n arcs.

Original entry on oeis.org

1, 1, 6, 24, 130, 688, 4211, 26840, 184153, 1328155, 10078617, 79926478, 660616432, 5671793248, 50459837996, 464139053799, 4405521306315, 43077862741114, 433275511964227, 4476516495577776, 47451864583578111, 515494036824348917, 5733423512317010811, 65226494052113260251, 758377712833720838677, 9004484581478188581057
Offset: 0

Views

Author

Vladeta Jovovic, Jan 26 2000

Keywords

Crossrefs

Programs

  • PARI
    a(n)={polcoef(G(2*n, x + O(x*x^(n))), n)} \\ Needs G from A333361. - Andrew Howroyd, Mar 16 2020
    
  • PARI
    \\ faster, also needs G from A333361.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i))}
    seq(n)={concat([1], EulerT(Vec(-1 + vecsum(InvEulerMT(vector(n+1, k, G(k, y + O(y*y^n))))))))} \\ Andrew Howroyd, Mar 16 2020

Formula

a(n) = A333361(n, 2*n). - Andrew Howroyd, Mar 16 2020

Extensions

a(16)-a(25) from Max Alekseyev, Jun 21 2011

A050930 Number of directed loopless multigraphs on 4 nodes with n arcs.

Original entry on oeis.org

1, 1, 6, 20, 69, 196, 554, 1368, 3240, 7110, 14896, 29624, 56755, 104468, 186484, 322800, 544590, 896259, 1443834, 2278640, 3531647, 5380064, 8069672, 11926928, 17392983, 25042836, 35637168, 50152068, 69853604, 96344440, 131669538
Offset: 0

Views

Author

Vladeta Jovovic, Dec 30 1999

Keywords

Crossrefs

Column k=4 of A333361.
Cf. A037240.

Formula

G.f.: (2*x^18 + 9*x^17 + 20*x^16 + 46*x^15 + 98*x^14 + 133*x^13 + 196*x^12 + 226*x^11 + 254*x^10 + 240*x^9 + 207*x^8 + 128*x^7 + 92*x^6 + 43*x^5 + 24*x^4 + 8*x^3 + 2*x^2-x + 1)/((x^4-1)^3*(x^3-1)^4*(x^2-1)^3*(x-1)^2).
Showing 1-4 of 4 results.