A138107
Infinite square array: T(n,k) = number of directed multigraphs with loops with n arcs and k vertices; read by falling antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 6, 1, 0, 1, 2, 10, 10, 1, 0, 1, 2, 11, 31, 19, 1, 0, 1, 2, 11, 47, 90, 28, 1, 0, 1, 2, 11, 51, 198, 222, 44, 1, 0, 1, 2, 11, 52, 269, 713, 520, 60, 1, 0, 1, 2, 11, 52, 291, 1270, 2423, 1090, 85, 1, 0, 1, 2, 11, 52, 295, 1596, 5776, 7388, 2180, 110, 1, 0
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 6, 10, 11, 11, 11, 11, 11, ...
0, 1, 10, 31, 47, 51, 52, 52, 52, ...
0, 1, 19, 90, 198, 269, 291, 295, 296, 296, ...
0, 1, 28, 222, 713, 1270, 1596, 1697, 1719, 1723, ...
0, 1, 44, 520, 2423, 5776, 8838, 10425, 10922, ...
0, 1, 60, 1090, 7388, 24032, 46384, ...
0, 1, 85, 2180, 21003, 93067, ...
0, 1, 110, 4090, ...
...
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
{my(A=T(10)); for(n=1, #A, print(A[n,]))} \\ Andrew Howroyd, Oct 22 2019
A037240
Molien series for 3-D group X1.
Original entry on oeis.org
1, 1, 5, 10, 24, 42, 83, 132, 222, 335, 511, 728, 1047, 1428, 1956, 2586, 3414, 4389, 5638, 7084, 8888, 10966, 13494, 16380, 19841, 23751, 28371, 33566, 39616, 46376, 54177, 62832, 72726, 83661, 96045, 109668, 124999, 141778, 160538, 181006, 203742, 228459, 255788, 285384
Offset: 0
- Robert Israel, Table of n, a(n) for n = 0..10000
- Ö. Egecioglu, Uniform generation of anonymous and neutral preference profiles for social choice rules, Technical Report, UCSB, 2005.
- Ö. Egecioglu, Uniform generation of anonymous and neutral preference profiles for social choice rules, Monte Carlo Methods and Applications, 15(3), Jan 2009, 241-255.
- Ira Gessel, Combinatorial counting with symmetry, MathOverflow, 2014.
- Marko V. Jaric and Joseph L. Birman, Calculation of the Molien generating function for invariants of space groups, J. Math. Phys. 18 (1977), 1459-1465; 2085.
- Alexander V. Karpov, An Informational Basis for Voting Rules, NRU Higher School of Economics. Series WP BRP "Economics/EC". 2018. No. 188.
- Index entries for Molien series
-
R:=PowerSeriesRing(Integers(), 50); Coefficients(R!( (1 +x^2 +3*x^3 +5*x^4 +x^5 +x^6)/((1-x)*(1-x^2)^3*(1-x^3)^2) )); // G. C. Greubel, Jan 31 2020
-
S:= series((1+x^2+3*x^3+5*x^4+x^5+ x^6)/(1 - x)/(1 - x^2)^3/(1 - x^3)^2, x, 101):
seq(coeff(S,x,n),n=0..100); # Robert Israel, Nov 22 2017
-
CoefficientList[Series[(1 +x^2 +3x^3 +5x^4 +x^5 +x^6)/(1-x)/(1-x^2)^3/(1-x^3)^2, {x, 0, 43}], x] (* Michael De Vlieger, Nov 01 2017 *)
-
Vec((1+x^2+3*x^3+5*x^4+x^5+x^6)/(1-x)/(1-x^2)^3/(1-x^3)^2 + O(x^50)) \\ Michel Marcus, Oct 31 2017
-
def A037240_list(prec):
P. = PowerSeriesRing(ZZ, prec)
return P( (1+x^2+3*x^3+5*x^4+x^5+x^6)/((1-x)*(1-x^2)^3*(1-x^3)^2) ).list()
A037240_list(50) # G. C. Greubel, Jan 31 2020
A052170
Number of directed loopless multigraphs with n arcs.
Original entry on oeis.org
1, 1, 6, 24, 130, 688, 4211, 26840, 184153, 1328155, 10078617, 79926478, 660616432, 5671793248, 50459837996, 464139053799, 4405521306315, 43077862741114, 433275511964227, 4476516495577776, 47451864583578111, 515494036824348917, 5733423512317010811, 65226494052113260251, 758377712833720838677, 9004484581478188581057
Offset: 0
-
a(n)={polcoef(G(2*n, x + O(x*x^(n))), n)} \\ Needs G from A333361. - Andrew Howroyd, Mar 16 2020
-
\\ faster, also needs G from A333361.
EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i))}
seq(n)={concat([1], EulerT(Vec(-1 + vecsum(InvEulerMT(vector(n+1, k, G(k, y + O(y*y^n))))))))} \\ Andrew Howroyd, Mar 16 2020
A050930
Number of directed loopless multigraphs on 4 nodes with n arcs.
Original entry on oeis.org
1, 1, 6, 20, 69, 196, 554, 1368, 3240, 7110, 14896, 29624, 56755, 104468, 186484, 322800, 544590, 896259, 1443834, 2278640, 3531647, 5380064, 8069672, 11926928, 17392983, 25042836, 35637168, 50152068, 69853604, 96344440, 131669538
Offset: 0
Showing 1-4 of 4 results.
Comments