cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A333361 Array read by antidiagonals: T(n,k) is the number of directed loopless multigraphs with n arcs and k vertices.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 5, 2, 0, 0, 1, 1, 6, 10, 3, 0, 0, 1, 1, 6, 20, 24, 3, 0, 0, 1, 1, 6, 23, 69, 42, 4, 0, 0, 1, 1, 6, 24, 110, 196, 83, 4, 0, 0, 1, 1, 6, 24, 126, 427, 554, 132, 5, 0, 0, 1, 1, 6, 24, 129, 603, 1681, 1368, 222, 5, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2020

Keywords

Examples

			==================================================
n\k | 0 1 2   3    4     5     6      7      8
----+---------------------------------------------
  0 | 1 1 1   1    1     1     1      1      1 ...
  1 | 0 0 1   1    1     1     1      1      1 ...
  2 | 0 0 2   5    6     6     6      6      6 ...
  3 | 0 0 2  10   20    23    24     24     24 ...
  4 | 0 0 3  24   69   110   126    129    130 ...
  5 | 0 0 3  42  196   427   603    668    684 ...
  6 | 0 0 4  83  554  1681  2983   3811   4116 ...
  7 | 0 0 4 132 1368  5881 13681  20935  24979 ...
  8 | 0 0 5 222 3240 19448 59680 112943 154504 ...
  ...
		

Crossrefs

Programs

  • PARI
    \\ here G(k,x) gives column k as rational function.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n, ]))}

Formula

T(n,k) = A052170(n) for k >= 2*n.

A121063 Number of labeled directed multigraphs with n arcs for which every vertex has in-degree at least one and out-degree at least one.

Original entry on oeis.org

1, 0, 1, 4, 27, 246, 2783, 37424, 582153, 10276452, 202894801, 4429522252, 105943672079, 2754788353526, 77371821493913, 2334279549290960, 75286455363538607, 2584971423426768872, 94138234184851584599, 3624294240897948371036, 147080227272202880297669
Offset: 0

Views

Author

Vladeta Jovovic, Sep 06 2006

Keywords

Crossrefs

Programs

  • Maple
    n:=20: t:=taylor(sum(sum((-1)^(s-k)*binomial(s,k)*((1+x/(1-x))^(k-1)-1)^k*((1+x/(1-x))^k-1)^(s-k),k=0..s),s=0..n),x,n+1): seq(coeff(t,x,s),s=0..n); # Nathaniel Johnston, Apr 28 2011

Formula

G.f.: A(x/(1-x)) where A(x) is g.f. for A121933.

A121137 Number of labeled directed multigraphs (without loops) with n arcs and no vertex of degree 0.

Original entry on oeis.org

1, 2, 27, 572, 16787, 631362, 28980861, 1570956872, 98212870233, 6956704585554, 550626446263423, 48163137319172436, 4613554511554200251, 480324019903607680066, 54004504167811544647161, 6521368218660772789452944, 841771274136198763040518633
Offset: 0

Views

Author

Vladeta Jovovic, Sep 06 2006

Keywords

Crossrefs

Cf. A052170 (unlabeled analog), A104209, A052171.

Programs

  • Maple
    seq(sum(binomial(m*(m-1)+n-1,n)/2^(m+1),m=0..infinity),n=0..10);
    # alternate program
    A121137:= n -> add(add(binomial(m, q)*(-1)^(m-q)*binomial(n+q*(q-1)-1, n), q=0..m), m=0..2*n):
    seq(A121137(n), n=0..20); # Marko Riedel, Jan 26 2025

Formula

a(n) = Sum_{m>=0} binomial(m*(m-1)+n-1,n)/2^(m+1).
a(n) = Sum_{m=0..2n} Sum_{q=0..m} binomial(m,q)*(-1)^(m-q)*binomial(n+q*(q-1)-1,n). - Marko Riedel, Jan 26 2025
Showing 1-3 of 3 results.