cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A333361 Array read by antidiagonals: T(n,k) is the number of directed loopless multigraphs with n arcs and k vertices.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 5, 2, 0, 0, 1, 1, 6, 10, 3, 0, 0, 1, 1, 6, 20, 24, 3, 0, 0, 1, 1, 6, 23, 69, 42, 4, 0, 0, 1, 1, 6, 24, 110, 196, 83, 4, 0, 0, 1, 1, 6, 24, 126, 427, 554, 132, 5, 0, 0, 1, 1, 6, 24, 129, 603, 1681, 1368, 222, 5, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2020

Keywords

Examples

			==================================================
n\k | 0 1 2   3    4     5     6      7      8
----+---------------------------------------------
  0 | 1 1 1   1    1     1     1      1      1 ...
  1 | 0 0 1   1    1     1     1      1      1 ...
  2 | 0 0 2   5    6     6     6      6      6 ...
  3 | 0 0 2  10   20    23    24     24     24 ...
  4 | 0 0 3  24   69   110   126    129    130 ...
  5 | 0 0 3  42  196   427   603    668    684 ...
  6 | 0 0 4  83  554  1681  2983   3811   4116 ...
  7 | 0 0 4 132 1368  5881 13681  20935  24979 ...
  8 | 0 0 5 222 3240 19448 59680 112943 154504 ...
  ...
		

Crossrefs

Programs

  • PARI
    \\ here G(k,x) gives column k as rational function.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n, ]))}

Formula

T(n,k) = A052170(n) for k >= 2*n.

A052170 Number of directed loopless multigraphs with n arcs.

Original entry on oeis.org

1, 1, 6, 24, 130, 688, 4211, 26840, 184153, 1328155, 10078617, 79926478, 660616432, 5671793248, 50459837996, 464139053799, 4405521306315, 43077862741114, 433275511964227, 4476516495577776, 47451864583578111, 515494036824348917, 5733423512317010811, 65226494052113260251, 758377712833720838677, 9004484581478188581057
Offset: 0

Views

Author

Vladeta Jovovic, Jan 26 2000

Keywords

Crossrefs

Programs

  • PARI
    a(n)={polcoef(G(2*n, x + O(x*x^(n))), n)} \\ Needs G from A333361. - Andrew Howroyd, Mar 16 2020
    
  • PARI
    \\ faster, also needs G from A333361.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i))}
    seq(n)={concat([1], EulerT(Vec(-1 + vecsum(InvEulerMT(vector(n+1, k, G(k, y + O(y*y^n))))))))} \\ Andrew Howroyd, Mar 16 2020

Formula

a(n) = A333361(n, 2*n). - Andrew Howroyd, Mar 16 2020

Extensions

a(16)-a(25) from Max Alekseyev, Jun 21 2011
Showing 1-2 of 2 results.