cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A333361 Array read by antidiagonals: T(n,k) is the number of directed loopless multigraphs with n arcs and k vertices.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 5, 2, 0, 0, 1, 1, 6, 10, 3, 0, 0, 1, 1, 6, 20, 24, 3, 0, 0, 1, 1, 6, 23, 69, 42, 4, 0, 0, 1, 1, 6, 24, 110, 196, 83, 4, 0, 0, 1, 1, 6, 24, 126, 427, 554, 132, 5, 0, 0, 1, 1, 6, 24, 129, 603, 1681, 1368, 222, 5, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2020

Keywords

Examples

			==================================================
n\k | 0 1 2   3    4     5     6      7      8
----+---------------------------------------------
  0 | 1 1 1   1    1     1     1      1      1 ...
  1 | 0 0 1   1    1     1     1      1      1 ...
  2 | 0 0 2   5    6     6     6      6      6 ...
  3 | 0 0 2  10   20    23    24     24     24 ...
  4 | 0 0 3  24   69   110   126    129    130 ...
  5 | 0 0 3  42  196   427   603    668    684 ...
  6 | 0 0 4  83  554  1681  2983   3811   4116 ...
  7 | 0 0 4 132 1368  5881 13681  20935  24979 ...
  8 | 0 0 5 222 3240 19448 59680 112943 154504 ...
  ...
		

Crossrefs

Programs

  • PARI
    \\ here G(k,x) gives column k as rational function.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n, ]))}

Formula

T(n,k) = A052170(n) for k >= 2*n.

A052170 Number of directed loopless multigraphs with n arcs.

Original entry on oeis.org

1, 1, 6, 24, 130, 688, 4211, 26840, 184153, 1328155, 10078617, 79926478, 660616432, 5671793248, 50459837996, 464139053799, 4405521306315, 43077862741114, 433275511964227, 4476516495577776, 47451864583578111, 515494036824348917, 5733423512317010811, 65226494052113260251, 758377712833720838677, 9004484581478188581057
Offset: 0

Views

Author

Vladeta Jovovic, Jan 26 2000

Keywords

Crossrefs

Programs

  • PARI
    a(n)={polcoef(G(2*n, x + O(x*x^(n))), n)} \\ Needs G from A333361. - Andrew Howroyd, Mar 16 2020
    
  • PARI
    \\ faster, also needs G from A333361.
    EulerT(v)={Vec(exp(x*Ser(dirmul(v,vector(#v,n,1/n))))-1, -#v)}
    InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i, vars))/i))}
    seq(n)={concat([1], EulerT(Vec(-1 + vecsum(InvEulerMT(vector(n+1, k, G(k, y + O(y*y^n))))))))} \\ Andrew Howroyd, Mar 16 2020

Formula

a(n) = A333361(n, 2*n). - Andrew Howroyd, Mar 16 2020

Extensions

a(16)-a(25) from Max Alekseyev, Jun 21 2011

A050930 Number of directed loopless multigraphs on 4 nodes with n arcs.

Original entry on oeis.org

1, 1, 6, 20, 69, 196, 554, 1368, 3240, 7110, 14896, 29624, 56755, 104468, 186484, 322800, 544590, 896259, 1443834, 2278640, 3531647, 5380064, 8069672, 11926928, 17392983, 25042836, 35637168, 50152068, 69853604, 96344440, 131669538
Offset: 0

Views

Author

Vladeta Jovovic, Dec 30 1999

Keywords

Crossrefs

Column k=4 of A333361.
Cf. A037240.

Formula

G.f.: (2*x^18 + 9*x^17 + 20*x^16 + 46*x^15 + 98*x^14 + 133*x^13 + 196*x^12 + 226*x^11 + 254*x^10 + 240*x^9 + 207*x^8 + 128*x^7 + 92*x^6 + 43*x^5 + 24*x^4 + 8*x^3 + 2*x^2-x + 1)/((x^4-1)^3*(x^3-1)^4*(x^2-1)^3*(x-1)^2).

A294085 a(n) is the number of self-symmetric anonymous and neutral equivalence classes of preference profiles with 3 alternatives and n agents (IANC model).

Original entry on oeis.org

1, 1, 3, 4, 8, 10, 17, 20, 30, 35, 49, 56, 75, 84, 108, 120, 150, 165, 202, 220, 264, 286, 338, 364, 425, 455, 525, 560, 640, 680, 771, 816, 918, 969, 1083, 1140, 1267, 1330, 1470, 1540, 1694, 1771, 1940, 2024, 2208, 2300, 2500, 2600, 2817, 2925, 3159, 3276, 3528, 3654, 3925
Offset: 0

Views

Author

Alexander Karpov, Apr 12 2018

Keywords

Crossrefs

For odd n, it is A000292.

Programs

  • PARI
    Vec((1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)) + O(x^60)) \\ Colin Barker, May 11 2018

Formula

a(n) = 2*A005513(n-6) - A037240(n).
If n is odd, a(n) = (n+5)*(n+3)*(n+1)/48;
If n is even, a(n) = ceiling((n+4)^2*(n+2)/48).
From Colin Barker, May 11 2018: (Start)
G.f.: (1 + x^3 + x^4) / ((1 - x)^4*(1 + x)^3*(1 - x + x^2)*(1 + x + x^2)).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-7) - 2*a(n-8) + 2*a(n-9) + a(n-10) - a(n-11) for n>10.
(End)

A296260 Number of preference profiles with 4 alternatives and n agents (IANC model).

Original entry on oeis.org

1, 1, 17, 111, 762, 4095, 19941, 84825, 329214, 1168740, 3858348, 11920740, 34773590, 96282900, 254473884, 644637204, 1571330916, 3697182450, 8421423582, 18615637950, 40023753924, 83859017814, 171530071362, 343059613650, 671825586021, 1289904147324, 2430974136780
Offset: 1

Views

Author

Alexander Karpov, Dec 15 2017

Keywords

Crossrefs

Cf. A037240 for 3 alternatives.

Programs

  • Mathematica
    Array[Binomial[# + 23, 23]/24 + Which[Divisible[#1, 12], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 + Binomial[#1/4 + 5, 5]/4, MemberQ[{1, 5, 7, 11}, #2], 0, MemberQ[{2, 10}, #2], 3 Binomial[#1/2 + 11, 11]/8, MemberQ[{3, 9}, #2], Binomial[#1/3 + 7, 7]/3, MemberQ[{4, 8}, #2], 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/4 + 5, 5]/4, True, 3 Binomial[#1/2 + 11, 11]/8 + Binomial[#1/3 + 7, 7]/3 ] & @@ {#, Mod[#, 12]} &, 26] (* Michael De Vlieger, Dec 18 2017 *)

Formula

if n == 0 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3+C(n/4+5,5)/4;
if n == 1,5,7,11 mod 12, a(n) = C(n+23,23)/24;
if n == 2,10 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8;
if n == 3,9 mod 12, a(n) = C(n+23,23)/24 + C(n/3+7,7)/3;
if n == 4,8 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 +C(n/4+5,5)/4;
if n == 6 mod 12, a(n) = C(n+23,23)/24 + C(n/2+11,11)*3/8 + C(n/3+7,7)/3.

Extensions

More terms from Michael De Vlieger, Dec 18 2017
Showing 1-5 of 5 results.