cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A098568 Triangle of triangular binomial coefficients, read by rows, where column k has the g.f.: 1/(1-x)^((k+1)*(k+2)/2) for k >= 0.

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 6, 6, 1, 1, 10, 21, 10, 1, 1, 15, 56, 55, 15, 1, 1, 21, 126, 220, 120, 21, 1, 1, 28, 252, 715, 680, 231, 28, 1, 1, 36, 462, 2002, 3060, 1771, 406, 36, 1, 1, 45, 792, 5005, 11628, 10626, 4060, 666, 45, 1, 1, 55, 1287, 11440, 38760, 53130, 31465, 8436
Offset: 0

Views

Author

Paul D. Hanna, Sep 15 2004

Keywords

Comments

The row sums form A098569: {1,2,5,14,43,143,510,1936,7775,32869,...}. How do the terms of row k tend to be distributed as k grows?
Remarkably, column k of the matrix inverse (A121434) equals signed column k of the triangular matrix power: A107876^(k*(k+1)/2) for k >= 0. - Paul D. Hanna, Aug 25 2006
Surprisingly, the row sums (A098569) equal the row sums of triangle A131338. - Paul D. Hanna, Aug 30 2007
Number of sequences S = s(1)s(2)...s(n) such that S contains m 0's, for 1<=j<=n, s(j)Frank Ruskey, Apr 15 2011
As a rectangular array read by antidiagonals R(n,k) (n>=2, k>=0) is the number of labeled graphs on n nodes that have exactly k arcs where multiple arcs are allowed to connect distinct vertex pairs. R(n,k) = C(C(n,2)+k-1,k). See example below. - Geoffrey Critzer, Nov 12 2011

Examples

			G.f.s of columns: 1/(1-x), 1/(1-x)^3, 1/(1-x)^6, 1/(1-x)^10, 1/(1-x)^15, ...
Rows begin:
  1;
  1,  1;
  1,  3,    1;
  1,  6,    6,     1;
  1, 10,   21,    10,      1;
  1, 15,   56,    55,     15,      1;
  1, 21,  126,   220,    120,     21,      1;
  1, 28,  252,   715,    680,    231,     28,     1;
  1, 36,  462,  2002,   3060,   1771,    406,    36,     1;
  1, 45,  792,  5005,  11628,  10626,   4060,   666,    45,    1;
  1, 55, 1287, 11440,  38760,  53130,  31465,  8436,  1035,   55,  1;
  1, 66, 2002, 24310, 116280, 230230, 201376, 82251, 16215, 1540, 66, 1; ...
From _Frank Ruskey_, Apr 15 2011: (Start)
In reference to comment about s(1)s(2)...s(n) above,
   a(4,2) = 6 = |{0012, 0013, 0023, 0101, 0103, 0120}|  and
   a(4,3) = 6 = |{0001, 0002, 0003, 0010, 0020, 0100}|. (End)
From _Geoffrey Critzer_, Nov 12 2011: (Start)
In reference to comment about multigraphs above,
  1,    1,    1,    1,    1,     1,     ...  2 nodes
  1,    3,    6,    10,   15,    21,    ...  3 nodes
  1,    6,    21,   56,   126,   252,   ...  .
  1,    10,   55,   220,  715,   2002,  ...  .
  1,    15,   120,  680,  3060,  11628, ...  .
  1,    21,   231,  1771, 10626, 58130, ...  . (End)
		

Crossrefs

Cf. A098569. A290428 (unlabeled graphs).
Cf. A121434 (inverse); variants: A122175, A122176, A122177; A107876.
Cf. A131338.

Programs

  • Mathematica
    t[n_, k_] = Binomial[(k+1)*(k+2)/2 + n-k-1, n-k]; Flatten[Table[t[n, k], {n, 0, 10}, {k, 0, n}]] (* Jean-François Alcover, Jul 18 2011 *)
  • PARI
    {T(n,k)=binomial((k+1)*(k+2)/2+n-k-1,n-k)}
    for(n=0,12,for(k=0,n,print1(T(n,k),", "));print(""))

Formula

T(n, k) = binomial((k+1)*(k+2)/2 + n-k-1, n-k).

A050531 Number of multigraphs with loops on 3 nodes with n edges.

Original entry on oeis.org

1, 2, 6, 14, 28, 52, 93, 152, 242, 370, 546, 784, 1103, 1512, 2040, 2706, 3534, 4554, 5803, 7304, 9108, 11252, 13780, 16744, 20205, 24206, 28826, 34126, 40176, 47056, 54857, 63648, 73542, 84630, 97014, 110808, 126139, 143108, 161868, 182546, 205282
Offset: 0

Views

Author

Vladeta Jovovic, Dec 29 1999

Keywords

Comments

a(n) is also the number of multigraphs (no loops allowed) on 3 nodes with n edges of two colors. - Geoffrey Critzer, Aug 10 2015

Crossrefs

Column k=3 of A290428.

Programs

  • Maple
    a076118:= gfun:-rectoproc({a(n+4) = 2*a(n+3)-3*a(n+2)+2*a(n+1)-a(n), a(0)=0,a(1)=1,a(2)=1,a(3)=-1}, a(n), remember):
    f:= n -> ceil((-1)^n*a076118(n+1)/9+(-1)^n*n/32+(4009/4320)*n+(1/2)*n^2+(5/36)*n^3+(1/48)*n^4+(1/720)*n^5):
    map(f, [$0..100]); # Robert Israel, Aug 07 2015
  • Mathematica
    < 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)
    CoefficientList[Series[(x^6 + x^4 + 2 x^3 + x^2 + 1)/((x^3 - 1)^2 (x^2 - 1)^2 (x - 1)^2), {x, 0, 45}], x] (* Vincenzo Librandi, Aug 08 2015 *)
  • PARI
    Vec((x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^2) + O(x^40)) \\ Colin Barker, Jul 07 2019

Formula

G.f.: (x^6+x^4+2*x^3+x^2+1)/((x^3-1)^2*(x^2-1)^2*(x-1)^2).
a(n) = ceiling((-1)^n*A076118(n+1)/9+(-1)^n*n/32+(4009/4320)*n+(1/2)*n^2+(5/36)*n^3+(1/48)*n^4+(1/720)*n^5). - Robert Israel, Aug 07 2015
a(n) = (A+B+C)/6 where A = binomial(n+5,5); B = (n+2)*(n+3)*(n+4)/8 if n even, B = (n+1)*(n+3)*(n+5)/8 if n odd; C = 2*((n/3) + 1) if n divisible by 3, C = 0 if n not divisible by 3. - David Pasino, Jul 06 2019
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n>11. - Colin Barker, Jul 07 2019

A050532 Number of multigraphs with loops on 4 nodes with n edges.

Original entry on oeis.org

1, 2, 7, 20, 53, 125, 287, 606, 1226, 2358, 4356, 7740, 13327, 22239, 36151, 57336, 88962, 135249, 201912, 296324, 428211, 609935, 857327, 1190216, 1633551, 2218011, 2981607, 3970548, 5241120, 6861024, 8911782, 11490282, 14711976, 18712911, 23653440
Offset: 0

Views

Author

Vladeta Jovovic, Dec 29 1999

Keywords

Crossrefs

Column k=4 of A290428.
Cf. A002620.

Programs

  • Mathematica
    << Combinatorica`
    nn = 30; n = 4; CoefficientList[Series[CycleIndex[Join[PairGroup[SymmetricGroup[n]], Permutations[Range[n*(n - 1)/2 + 1, n*(n + 1)/2]], 2], s] /.Table[s[i] -> 1/(1 - x^i), {i, 1, n^2 - n}], {x, 0, nn}], x] (* Geoffrey Critzer, Aug 07 2015 *)
    CoefficientList[Series[(4 x^11 + 4 x^10 + 11 x^9 + 15 x^8 + 9 x^7 + 12 x^6 + 6 x^5 + 6 x^4 + 3 x^3 + 2 x^2 - x + 1)/((x^4 - 1)^2 (x^3 - 1)^3 (x^2 - 1)^2 (x-1)^3), {x, 0, 35}], x] (* Vincenzo Librandi, Aug 08 2015 *)
  • PARI
    Vec((1 - x + 2*x^2 + 3*x^3 + 6*x^4 + 6*x^5 + 12*x^6 + 9*x^7 + 15*x^8 + 11*x^9 + 4*x^10 + 4*x^11)/((1 - x)^3*(1 - x^2)^2*(1 - x^3)^3*(1 - x^4)^2) + O(x^40)) \\ Andrew Howroyd, Mar 16 2020

Formula

G.f.: (4*x^11+4*x^10+11*x^9+15*x^8+9*x^7+12*x^6+6*x^5+6*x^4+3*x^3+2*x^2-x+1)/((x^4-1)^2*(x^3-1)^3*(x^2-1)^2*(x-1)^3).

Extensions

a(33)-a(34) from Vincenzo Librandi, Aug 08 2015

A333361 Array read by antidiagonals: T(n,k) is the number of directed loopless multigraphs with n arcs and k vertices.

Original entry on oeis.org

1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 1, 2, 0, 0, 1, 1, 5, 2, 0, 0, 1, 1, 6, 10, 3, 0, 0, 1, 1, 6, 20, 24, 3, 0, 0, 1, 1, 6, 23, 69, 42, 4, 0, 0, 1, 1, 6, 24, 110, 196, 83, 4, 0, 0, 1, 1, 6, 24, 126, 427, 554, 132, 5, 0, 0, 1, 1, 6, 24, 129, 603, 1681, 1368, 222, 5, 0, 0
Offset: 0

Views

Author

Andrew Howroyd, Mar 16 2020

Keywords

Examples

			==================================================
n\k | 0 1 2   3    4     5     6      7      8
----+---------------------------------------------
  0 | 1 1 1   1    1     1     1      1      1 ...
  1 | 0 0 1   1    1     1     1      1      1 ...
  2 | 0 0 2   5    6     6     6      6      6 ...
  3 | 0 0 2  10   20    23    24     24     24 ...
  4 | 0 0 3  24   69   110   126    129    130 ...
  5 | 0 0 3  42  196   427   603    668    684 ...
  6 | 0 0 4  83  554  1681  2983   3811   4116 ...
  7 | 0 0 4 132 1368  5881 13681  20935  24979 ...
  8 | 0 0 5 222 3240 19448 59680 112943 154504 ...
  ...
		

Crossrefs

Programs

  • PARI
    \\ here G(k,x) gives column k as rational function.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^(v[i]-1))}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n, ]))}

Formula

T(n,k) = A052170(n) for k >= 2*n.

A327615 Irregular triangle read by rows: T(n,k) is the number of unlabeled multigraphs with loops allowed and n edges covering k vertices, n >= 1, 1 <= k <= 2*n.

Original entry on oeis.org

1, 1, 1, 3, 2, 1, 1, 5, 8, 6, 2, 1, 1, 8, 19, 25, 16, 7, 2, 1, 1, 11, 40, 73, 73, 47, 19, 7, 2, 1, 1, 15, 77, 194, 263, 232, 133, 58, 20, 7, 2, 1, 1, 19, 132, 454, 835, 951, 719, 397, 164, 61, 20, 7, 2, 1, 1, 24, 217, 984, 2385, 3507, 3365, 2306, 1177, 490, 175, 62, 20, 7, 2, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 23 2019

Keywords

Comments

Covering k vertices means there are no vertices of degree zero.

Examples

			Triangle begins:
  1,  1;
  1,  3,   2,   1;
  1,  5,   8,   6,   2,   1;
  1,  8,  19,  25,  16,   7,   2,   1;
  1, 11,  40,  73,  73,  47,  19,   7,   2,  1;
  1, 15,  77, 194, 263, 232, 133,  58,  20,  7,  2, 1;
  1, 19, 132, 454, 835, 951, 719, 397, 164, 61, 20, 7, 2, 1;
  ...
		

Crossrefs

Row sums are A007717.
Columns k=2..3 are A024206, A327728.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
    C(n,m)={my(s=O(x*x^m)); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i+O(x*x^m))); Col(s/n!)}
    T(m) = {my(n=2*m, A=Mat(vector(n+1, n, C(n-1,m)))); A[2..m+1, 2..n+1]-A[2..m+1, 1..n]}
    { my(A=T(8)); for(n=1, matsize(A)[1], print(A[n, 1..2*n])) }

Formula

T(n,k) = A290428(n,k) - A290428(n,k-1).

A360880 Triangle read by rows: T(n,k) is the number of unlabeled nonseparable (or 2-connected) multigraphs with n edges and k nodes, loops allowed, n >= 1, 2 <= k <= n + 1.

Original entry on oeis.org

1, 2, 0, 4, 1, 0, 6, 2, 1, 0, 9, 6, 3, 1, 0, 12, 14, 13, 4, 1, 0, 16, 28, 39, 22, 5, 1, 0, 20, 52, 112, 98, 39, 6, 1, 0, 25, 93, 281, 383, 236, 63, 8, 1, 0, 30, 152, 655, 1304, 1220, 515, 102, 9, 1, 0, 36, 242, 1408, 3980, 5418, 3512, 1077, 153, 11, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Feb 25 2023

Keywords

Examples

			Triangle T(n,k) begins (n edges >= 1, k vertices >= 2):
   1;
   2,   0;
   4,   1,   0;
   6,   2,   1,    0;
   9,   6,   3,    1,    0;
  12,  14,  13,    4,    1,   0;
  16,  28,  39,   22,    5,   1,   0;
  20,  52, 112,   98,   39,   6,   1, 0;
  25,  93, 281,  383,  236,  63,   8, 1, 0;
  30, 152, 655, 1304, 1220, 515, 102, 9, 1, 0;
  ...
		

Crossrefs

Columns k=2..3 are A002620(n+1), A050531(n-3).
Row sums are A360881.
Showing 1-6 of 6 results.