cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A007717 Number of symmetric polynomial functions of degree n of a symmetric matrix (of indefinitely large size) under joint row and column permutations. Also number of multigraphs with n edges (allowing loops) on an infinite set of nodes.

Original entry on oeis.org

1, 2, 7, 23, 79, 274, 1003, 3763, 14723, 59663, 250738, 1090608, 4905430, 22777420, 109040012, 537401702, 2723210617, 14170838544, 75639280146, 413692111521, 2316122210804, 13261980807830, 77598959094772, 463626704130058, 2826406013488180, 17569700716557737
Offset: 0

Views

Author

Keywords

Comments

Euler transform of A007719.
Also the number of non-isomorphic multiset partitions of {1, 1, 2, 2, 3, 3, ..., n, n}. - Gus Wiseman, Jul 18 2018
Number of distinct n X 2n matrices with integer entries and rows sums 2, up to row and column permutations. - Andrew Howroyd, Sep 06 2018
a(n) is the number of unlabeled loopless multigraphs with n edges rooted at one vertex. - Andrew Howroyd, Nov 22 2020

Examples

			a(2) = 7 (here - denotes an edge, = denotes a pair of parallel edges and o is a loop):
  oo
  o o
  o-
  o -
  =
  --
  - -
From _Gus Wiseman_, Jul 18 2018: (Start)
Non-isomorphic representatives of the a(2) = 7 multiset partitions of {1, 1, 2, 2}:
  (1122),
  (1)(122), (11)(22), (12)(12),
  (1)(1)(22), (1)(2)(12),
  (1)(1)(2)(2).
(End)
From _Gus Wiseman_, Jan 08 2024: (Start)
Non-isomorphic representatives of the a(1) = 1 through a(3) = 7 rooted loopless multigraphs (root shown as singleton):
  {{1}}  {{1},{1,2}}  {{1},{1,2},{1,2}}
         {{1},{2,3}}  {{1},{1,2},{1,3}}
                      {{1},{1,2},{2,3}}
                      {{1},{1,2},{3,4}}
                      {{1},{2,3},{2,3}}
                      {{1},{2,3},{2,4}}
                      {{1},{2,3},{4,5}}
(End)
		

References

  • Huaien Li and David C. Torney, Enumerations of Multigraphs, 2002.

Crossrefs

Programs

  • Mathematica
    permcount[v_] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t k; s += t]; s!/m];
    Kq[q_, t_, k_] := SeriesCoefficient[1/Product[g = GCD[t, q[[j]]]; (1 - x^(q[[j]]/g))^g, {j, 1, Length[q]}], {x, 0, k}];
    RowSumMats[n_, m_, k_] := Module[{s=0}, Do[s += permcount[q]* SeriesCoefficient[Exp[Sum[Kq[q, t, k]/t x^t, {t, 1, n}]], {x, 0, n}], {q, IntegerPartitions[m]}]; s/m!];
    a[n_] := RowSumMats[n, 2n, 2];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 25}] (* Jean-François Alcover, Oct 27 2018, after Andrew Howroyd *)
  • PARI
    \\ See A318951 for RowSumMats
    a(n)=RowSumMats(n, 2*n, 2); \\ Andrew Howroyd, Sep 06 2018
    
  • PARI
    \\ See A339065 for G.
    seq(n)={my(A=O(x*x^n)); Vec(G(2*n, x+A, [1]))} \\ Andrew Howroyd, Nov 22 2020

Extensions

More terms from Vladeta Jovovic, Jan 26 2000
a(0)=1 prepended and a(16)-a(25) added by Max Alekseyev, Jun 21 2011

A089353 Triangle read by rows: T(n,m) = number of planar partitions of n with trace m.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 4, 6, 2, 1, 5, 10, 6, 2, 1, 6, 19, 14, 6, 2, 1, 7, 28, 28, 14, 6, 2, 1, 8, 44, 52, 33, 14, 6, 2, 1, 9, 60, 93, 64, 33, 14, 6, 2, 1, 10, 85, 152, 127, 70, 33, 14, 6, 2, 1, 11, 110, 242, 228, 142, 70, 33, 14, 6, 2, 1, 12, 146, 370, 404, 272, 149, 70, 33, 14, 6, 2, 1, 13
Offset: 1

Views

Author

Wouter Meeussen and Vladeta Jovovic, Dec 26 2003

Keywords

Comments

Also number of partitions of n objects of 2 colors into k parts, each part containing at least one black object.

Examples

			The triangle T(n,m) begins:
  n\m  1   2   3   4   5   6  7  8  9 10 11 12 ...
  1:   1
  2:   2   1
  3:   3   2   1
  4:   4   6   2   1
  5:   5  10   6   2   1
  6:   6  19  14   6   2   1
  7:   7  28  28  14   6   2  1
  8:   8  44  52  33  14   6  2  1
  9:   9  60  93  64  33  14  6  2  1
  10: 10  85 152 127  70  33 14  6  2  1
  11: 11 110 242 228 142  70 33 14  6  2  1
  12: 12 146 370 404 272 149 70 33 14  6  2  1
  ... reformatted, _Wolfdieter Lang_, Mar 09 2015
		

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (Ch. 11, Example 5 and Ch. 12, Example 5).
  • R. P. Stanley, Enumerative Combinatorics, Cambridge University Press, Vol. 2, 1999; p. 365 and Exercise 7.99, p. 484 and pp. 548-549.

Crossrefs

Cf. A000219 (row sums), A005380, A005993 (trace 2), A050531 (trace 3), A089351 (trace 4).

Programs

  • Maple
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, add(b(n-i*j, i-1)*x^j*
           binomial(i+j-1, j), j=0..n/i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2)):
    seq(T(n), n=1..12);  # Alois P. Heinz, Apr 13 2017
  • Mathematica
    b[n_, i_] := b[n, i] = Expand[If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1]*x^j*Binomial[i + j - 1, j], {j, 0, n/i}]]]];
    T[n_] := Table[Coefficient[#, x, i], {i, 1, Exponent[#, x]}]& @ b[n, n];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, May 19 2018, after Alois P. Heinz *)

Formula

G.f.: Product_{k>=1} 1/(1-q*x^k)^k (with offset n=0 in x powers).
T(n+m, m) = A005380(n), n >= 1, for all m >= n. T(m, m) = 1 for m >= 1. See the Stanley reference Exercise 7.99. With offset n=0 a column for m=0 with the only non-vanishing entry T(0, 0) = 1 could be added. - Wolfdieter Lang, Mar 09 2015

Extensions

Edited by Christian G. Bower, Jan 08 2004

A290428 Array read by antidiagonals: T(n,k) is the number of graphs with n edges and k vertices, allowing loops and multi-edges.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 4, 1, 0, 1, 2, 6, 6, 1, 0, 1, 2, 7, 14, 9, 1, 0, 1, 2, 7, 20, 28, 12, 1, 0, 1, 2, 7, 22, 53, 52, 16, 1, 0, 1, 2, 7, 23, 69, 125, 93, 20, 1, 0, 1, 2, 7, 23, 76, 198, 287, 152, 25, 1, 0, 1, 2, 7, 23, 78, 245, 550, 606, 242, 30, 1, 0
Offset: 0

Views

Author

R. J. Mathar, Jul 31 2017

Keywords

Comments

Variant of A138107, here for non-directed edges.

Examples

			1   1   1   1    1    1    1   1   1...
0   1   2   2    2    2    2   2   2...
0   1   4   6    7    7    7   7   7...
0   1   6  14   20   22   23  23  23...
0   1   9  28   53   69   76  78  79...
0   1  12  52  125  198  245 264 271...
0   1  16  93  287  550  782 915 973...
0   1  20 152  606 1441 2392
0   1  25 242 1226 3611
		

Crossrefs

Cf. A050531 (column 3), A050532 (column 4), A138107, A098568 (vertex-labeled).

Programs

  • Mathematica
    rows = 12;
    permcount[v_] := Module[{m=1, s=0, k=0, t}, For[i=1, i <= Length[v], i++, t = v[[i]]; k = If[i>1 && t == v[[i-1]], k+1, 1]; m *= t*k; s += t]; s!/m];
    edges[v_, t_] := Product[g = GCD[v[[i]], v[[j]] ]; t[v[[i]]*v[[j]]/g]^g, {i, 2, Length[v]}, {j, 1, i - 1}]*Product[c = v[[i]]; t[c]^Quotient[c + 1, 2]*If[OddQ[c], 1, t[c/2]], {i, 1, Length[v]}];
    col[k_] := col[k] = Module[{s = O[x]^rows}, Do[s += permcount[p]*1/edges[p, 1 - x^# + O[x]^rows&], {p, IntegerPartitions[k]}]; s/k!] // CoefficientList[#, x]&;
    T[0, ] = 1; T[, 0] = 0;
    T[n_, k_] := col[k][[n + 1]];
    Table[T[n-k, k], {n, 0, rows-1}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Jan 08 2021, after Andrew Howroyd *)
  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
    T(m, n=m) = {Mat(vector(n+1, n, my(s=O(x*x^m)); forpart(p=n-1, s+=permcount(p)*1/edges(p,i->1-x^i+O(x*x^m))); Col(s/(n-1)!)))}
    { my(A=T(8)); for(n=1, #A, print(A[n,])) } \\ Andrew Howroyd, Oct 22 2019

A058407 Number of 3 X n nonnegative integer matrices with all column sums 3, up to row and column permutation.

Original entry on oeis.org

1, 3, 13, 44, 134, 356, 876, 1966, 4146, 8236, 15592, 28252, 49357, 83377, 136837, 218728, 341554, 522064, 782810, 1153180, 1671698, 2387568, 3363738, 4679208, 6433183, 8748119, 11775343, 15699188, 20744108, 27180308, 35332850, 45588746
Offset: 0

Views

Author

Vladeta Jovovic, Nov 25 2000

Keywords

Comments

Number of 3 X n nonnegative integer matrices with all column sums equal to m, up to row and column permutation, is coefficient of x^n in expansion of 1 / 6 * (1 / (1 - x)^C(m + 2,2) + 3 / (1 - x)^floor((m + 2) / 2) / (1 - x^2)^(C(m + 2,2) - floor((m + 2) / 2)) / 2 + 2 / (1 - x)^(C(m + 2,2) - 3 * floor(C(m + 2,2) / 3)) / (1 - x^3)^floor(C(m + 2,2) / 3)).

Crossrefs

Formula

G.f.: 1/6*(1/(1-x)^10+3/(1-x)^2/(1-x^2)^4+2/(1-x)/(1-x^3)^3).

Extensions

More terms from Max Alekseyev, Jun 21 2011

A058408 Number of 3 X n nonnegative integer matrices with all column sums 4, up to row and column permutation.

Original entry on oeis.org

1, 4, 26, 129, 546, 2010, 6615, 19650, 53790, 137035, 328262, 745078, 1613072, 3348198, 6693822, 12937656, 24253200, 44219610, 78604130, 136511100, 232054284
Offset: 0

Views

Author

Vladeta Jovovic, Nov 25 2000

Keywords

Comments

Number of 3 X n nonnegative integer matrices with all column sums equal to m, up to row and column permutation, is coefficient of x^n in expansion of 1 / 6 * (1 / (1 - x)^C(m + 2,2) + 3 / (1 - x)^floor((m + 2) / 2) / (1 - x^2)^(C(m + 2,2) - floor((m + 2) / 2)) / 2 + 2 / (1 - x)^(C(m + 2,2) - 3 * floor(C(m + 2,2) / 3)) / (1 - x^3)^floor(C(m + 2,2) / 3)).

Crossrefs

Formula

G.f.: 1/6*(1/(1-x)^15+3/(1-x)^3/(1-x^2)^6+2/(1-x^3)^5).

A327728 Number of unlabeled multigraphs with loops allowed and n edges covering three vertices.

Original entry on oeis.org

0, 2, 8, 19, 40, 77, 132, 217, 340, 510, 742, 1054, 1456, 1976, 2634, 3453, 4464, 5703, 7194, 8987, 11120, 13636, 16588, 20036, 24024, 28630, 33916, 39951, 46816, 54601, 63376, 73253, 84324, 96690, 110466, 125778, 142728, 161468, 182126, 204841, 229768, 257075, 286902, 319447, 354880, 393384
Offset: 1

Views

Author

Andrew Howroyd, Oct 23 2019

Keywords

Examples

			a(2) = 2 since three vertices may be covered with two edges in 2 ways: the path graph P(3) or an edge plus a loop.
		

Crossrefs

Column k=3 of A327615.

Programs

  • PARI
    concat([0], Vec((2 + 4*x + x^2 - 2*x^3 + x^6)/((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2) + O(x^40)))

Formula

a(n) = A050531(n) - A002620(n+2).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n > 12.
G.f.: x^2*(2 + 4*x + x^2 - 2*x^3 + x^6)/((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2).

A360880 Triangle read by rows: T(n,k) is the number of unlabeled nonseparable (or 2-connected) multigraphs with n edges and k nodes, loops allowed, n >= 1, 2 <= k <= n + 1.

Original entry on oeis.org

1, 2, 0, 4, 1, 0, 6, 2, 1, 0, 9, 6, 3, 1, 0, 12, 14, 13, 4, 1, 0, 16, 28, 39, 22, 5, 1, 0, 20, 52, 112, 98, 39, 6, 1, 0, 25, 93, 281, 383, 236, 63, 8, 1, 0, 30, 152, 655, 1304, 1220, 515, 102, 9, 1, 0, 36, 242, 1408, 3980, 5418, 3512, 1077, 153, 11, 1, 0
Offset: 1

Views

Author

Andrew Howroyd, Feb 25 2023

Keywords

Examples

			Triangle T(n,k) begins (n edges >= 1, k vertices >= 2):
   1;
   2,   0;
   4,   1,   0;
   6,   2,   1,    0;
   9,   6,   3,    1,    0;
  12,  14,  13,    4,    1,   0;
  16,  28,  39,   22,    5,   1,   0;
  20,  52, 112,   98,   39,   6,   1, 0;
  25,  93, 281,  383,  236,  63,   8, 1, 0;
  30, 152, 655, 1304, 1220, 515, 102, 9, 1, 0;
  ...
		

Crossrefs

Columns k=2..3 are A002620(n+1), A050531(n-3).
Row sums are A360881.

A089351 Number of planar partitions of n with trace 4.

Original entry on oeis.org

1, 2, 6, 14, 33, 64, 127, 228, 404, 672, 1100, 1724, 2661, 3974, 5849, 8402, 11911, 16556, 22751, 30772, 41198, 54436, 71283, 92316, 118609, 150950, 190753, 239090, 297783, 368236, 452782, 553240, 672532, 812980, 978211, 1171144, 1396235
Offset: 4

Views

Author

Wouter Meeussen and Vladeta Jovovic, Dec 26 2003

Keywords

Comments

Also number of partitions of n objects of 2 colors into 4 parts, each part containing at least one black object.

References

  • G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976 (Ch. XI, exercise 5 and Ch. XII, exercise 5).

Crossrefs

Column 4 of A089353. Cf. A000219, A005380, A005993 (trace 2), A050531 (trace 3).

Formula

G.f.: q^4*(q^12+q^10+2*q^9+4*q^8+2*q^7+4*q^6+2*q^5+4*q^4+2*q^3+q^2+1) / ((-1+q^4)^2*(-1+q^3)^2*(-1+q^2)^2*(-1+q)^2).

Extensions

Edited and extended by Christian G. Bower, Jan 08 2004

A261174 Number of multigraphs on 4 unlabeled nodes with n edges where the edges can be of two colors.

Original entry on oeis.org

1, 2, 9, 30, 90, 248, 650, 1560, 3560, 7680, 15786, 31076, 58905, 107768, 191180, 329664, 554038, 909558, 1461655, 2302950, 3563482, 5422392, 8124040, 11997648, 17482295, 25156872, 35779092, 50330364, 70072640, 96615760, 131999058, 178786960, 240186182, 320179470
Offset: 0

Views

Author

Geoffrey Critzer, Aug 10 2015

Keywords

Crossrefs

Cf. A050531 (case of 3 nodes).

Programs

  • Mathematica
    Needs["Combinatorica`"];n = 4; nn = 25; CoefficientList[Series[PairGroupIndex[SymmetricGroup[n], s] /.Table[s[i] -> 1/(1 - x^i)^2, {i, 1, Binomial[n, 2]}], {x, 0, nn}], x]
  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    G(n)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p, i->(1-x^i)^2)); s/n!}
    { Vec(G(4) + O(x^36)) } \\ Andrew Howroyd, Apr 18 2021

Formula

G.f.: (1 - 2*x + 5*x^2 + 2*x^3 + 10*x^4 + 12*x^5 + 32*x^6 + 20*x^7 + 56*x^8 + 20*x^9 + 32*x^10 + 12*x^11 + 10*x^12 + 2*x^13 + 5*x^14 - 2*x^15 + x^16)/((1 - x)^12*(1 + x)^4*(1 + x^2)^2*(1 + x + x^2)^4). - Andrew Howroyd, Apr 18 2021

Extensions

Terms a(26) and beyond from Andrew Howroyd, Apr 18 2021
Showing 1-9 of 9 results.