cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A360862 Triangle read by rows: T(n,k) is the number of unlabeled connected multigraphs with n edges on k nodes and degree >= 3 at each node, loops allowed, n >= 2, 1 <= k <= floor(2*n/3).

Original entry on oeis.org

1, 1, 2, 1, 4, 1, 7, 5, 1, 10, 20, 5, 1, 14, 48, 36, 1, 18, 99, 153, 30, 1, 23, 181, 481, 277, 17, 1, 28, 303, 1239, 1451, 323, 1, 34, 479, 2811, 5572, 2946, 193, 1, 40, 726, 5805, 17607, 17343, 3806, 71, 1, 47, 1055, 11148, 48401, 77708, 36872, 3188, 1, 54, 1492, 20219, 120018, 288476, 243007, 54386, 1496
Offset: 2

Views

Author

Andrew Howroyd, Feb 24 2023

Keywords

Comments

Terms may be computed using the tools geng, vcolg and multig in nauty with some additional processing to check the degrees of nodes.

Examples

			Triangle begins:
  1;
  1,  2;
  1,  4;
  1,  7,    5;
  1, 10,   20,     5;
  1, 14,   48,    36;
  1, 18,   99,   153,     30;
  1, 23,  181,   481,    277,     17;
  1, 28,  303,  1239,   1451,    323;
  1, 34,  479,  2811,   5572,   2946,    193;
  1, 40,  726,  5805,  17607,  17343,   3806,    71;
  1, 47, 1055, 11148,  48401,  77708,  36872,  3188;
  1, 54, 1492, 20219, 120018, 288476, 243007, 54386, 1496;
  ...
		

Crossrefs

Column 2 is A014616.
Row sums are A360863.
Diagonal sums are A360864.
Cf. A322115, A327615, A360866 (loopless).

A309936 Irregular triangle read by rows: T(n,k) is the number of unlabeled loopless multigraphs with n edges covering k vertices, n >= 1, 1 <= k <= 2*n.

Original entry on oeis.org

0, 1, 0, 1, 1, 1, 0, 1, 2, 3, 1, 1, 0, 1, 3, 7, 6, 4, 1, 1, 0, 1, 4, 13, 17, 17, 8, 4, 1, 1, 0, 1, 6, 25, 44, 56, 41, 24, 9, 4, 1, 1, 0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1, 0, 1, 9, 65, 216, 450, 562, 503, 315, 162, 64, 27, 9, 4, 1, 1
Offset: 1

Views

Author

Andrew Howroyd, Oct 23 2019

Keywords

Comments

Covering k vertices means there are no vertices of degree zero.

Examples

			Triangle begins:
  0, 1;
  0, 1, 1,  1;
  0, 1, 2,  3,   1,   1;
  0, 1, 3,  7,   6,   4,   1,   1;
  0, 1, 4, 13,  17,  17,   8,   4,  1,  1;
  0, 1, 6, 25,  44,  56,  41,  24,  9,  4, 1, 1;
  0, 1, 7, 40, 101, 164, 158, 117, 57, 26, 9, 4, 1, 1;
  ...
		

Crossrefs

Row sums are A050535.
Columns k=3..4 are A253186, A328652.

Programs

  • PARI
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c-1)\2)*if(c%2, 1, t(c/2)))}
    C(n,m)={my(s=O(x*x^m)); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i+O(x*x^m))); Col(s/n!)}
    T(m) = {my(n=2*m, A=Mat(vector(n+1, n, C(n-1,m)))); A[2..m+1, 2..n+1]-A[2..m+1, 1..n]}
    { my(A=T(8)); for(n=1, matsize(A)[1], print(A[n, 1..2*n])) }

Formula

T(n,k) = A192517(k,n) - A192517(k-1,n) for k > 1.

A327728 Number of unlabeled multigraphs with loops allowed and n edges covering three vertices.

Original entry on oeis.org

0, 2, 8, 19, 40, 77, 132, 217, 340, 510, 742, 1054, 1456, 1976, 2634, 3453, 4464, 5703, 7194, 8987, 11120, 13636, 16588, 20036, 24024, 28630, 33916, 39951, 46816, 54601, 63376, 73253, 84324, 96690, 110466, 125778, 142728, 161468, 182126, 204841, 229768, 257075, 286902, 319447, 354880, 393384
Offset: 1

Views

Author

Andrew Howroyd, Oct 23 2019

Keywords

Examples

			a(2) = 2 since three vertices may be covered with two edges in 2 ways: the path graph P(3) or an edge plus a loop.
		

Crossrefs

Column k=3 of A327615.

Programs

  • PARI
    concat([0], Vec((2 + 4*x + x^2 - 2*x^3 + x^6)/((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2) + O(x^40)))

Formula

a(n) = A050531(n) - A002620(n+2).
a(n) = 2*a(n-1) + a(n-2) - 2*a(n-3) - 3*a(n-4) + 6*a(n-6) - 3*a(n-8) - 2*a(n-9) + a(n-10) + 2*a(n-11) - a(n-12) for n > 12.
G.f.: x^2*(2 + 4*x + x^2 - 2*x^3 + x^6)/((1 - x)^6*(1 + x)^2*(1 + x + x^2)^2).
Showing 1-3 of 3 results.