A138107
Infinite square array: T(n,k) = number of directed multigraphs with loops with n arcs and k vertices; read by falling antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 6, 1, 0, 1, 2, 10, 10, 1, 0, 1, 2, 11, 31, 19, 1, 0, 1, 2, 11, 47, 90, 28, 1, 0, 1, 2, 11, 51, 198, 222, 44, 1, 0, 1, 2, 11, 52, 269, 713, 520, 60, 1, 0, 1, 2, 11, 52, 291, 1270, 2423, 1090, 85, 1, 0, 1, 2, 11, 52, 295, 1596, 5776, 7388, 2180, 110, 1, 0
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 6, 10, 11, 11, 11, 11, 11, ...
0, 1, 10, 31, 47, 51, 52, 52, 52, ...
0, 1, 19, 90, 198, 269, 291, 295, 296, 296, ...
0, 1, 28, 222, 713, 1270, 1596, 1697, 1719, 1723, ...
0, 1, 44, 520, 2423, 5776, 8838, 10425, 10922, ...
0, 1, 60, 1090, 7388, 24032, 46384, ...
0, 1, 85, 2180, 21003, 93067, ...
0, 1, 110, 4090, ...
...
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
{my(A=T(10)); for(n=1, #A, print(A[n,]))} \\ Andrew Howroyd, Oct 22 2019
A052171
Number of directed multigraphs with loops on an infinite set of nodes containing a total of n arcs.
Original entry on oeis.org
1, 2, 11, 52, 296, 1724, 11060, 74527, 533046, 3999187, 31412182, 257150093, 2188063401, 19299062896, 176059781439, 1657961491087, 16089088019098, 160643776819423, 1648068916722737, 17351137043998280, 187255329043638437, 2069426416836401375, 23397468305569068113, 270406562951254606048, 3191908298072118225550, 38454691427657997701136
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Banglei Guan, Ji Zhao, and Laurent Kneip, Six-Point Method for Multi-Camera Systems with Reduced Solution Space, arXiv:2402.18066 [cs.CV], 2024. See p. 10.
- J.-C. Novelli, J.-Y. Thibon and N. M. Thiery, Algèbres de Hopf de graphes, C.R. Acad. Sci. Paris (Comptes Rendus Mathématique), 339 (2004), 607-610.
- Sanjaye Ramgoolam, Permutation Invariant Gaussian Matrix Models, arXiv:1809.07559 [hep-th], 2018.
A136564
Array read by rows: T(n,k) is the number of directed multigraphs with loops with n arcs, k vertices, and no vertex of degree 0.
Original entry on oeis.org
1, 1, 1, 5, 4, 1, 1, 9, 21, 16, 4, 1, 1, 18, 71, 108, 71, 22, 4, 1, 1, 27, 194, 491, 557, 326, 101, 22, 4, 1, 1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1, 1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1, 1, 84, 2095, 18823, 72064
Offset: 1
1, 1;
1, 5, 4, 1;
1, 9, 21, 16, 4, 1;
1, 18, 71, 108, 71, 22, 4, 1;
1, 27, 194, 491, 557, 326, 101, 22, 4, 1;
1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1;
1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1;
A139625
Table read by rows: T(n,k) is the number of strongly connected directed multigraphs with loops and no vertex of degree 0, with n arcs and k vertices, which are transitive (the existence of a path between two points implies the existence of an arc between those two points).
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 2, 1, 6, 1, 10, 1, 19, 1, 28, 1, 1, 44, 2, 1, 60, 10, 1, 85, 31, 1, 110, 90, 1, 146, 222, 1, 182, 520, 1, 231, 1090, 1, 1, 280, 2180, 2, 1, 344, 4090, 11, 1
Offset: 1
Triangle begins:
1
1
1
1 1
1 2
1 6
1 10
1 19
1 28 1
Showing 1-4 of 4 results.
Comments