Original entry on oeis.org
1, 4, 22, 111, 570, 2917, 15112, 78900, 416525, 2221529, 11974498, 65211746, 358742016, 1992975905, 11178149883, 63279615534, 361464920864, 2082869242399, 12104344580384, 70924864962233, 418922049779244
Offset: 0
-
\\ Needs G function from A138107.
a(n)={if(n==0, 1, my(m=2*n); polcoef(G(3*n, x + O(x*x^m)) - G(3*n-1, x + O(x*x^m)), m))} \\ Andrew Howroyd, Apr 20 2020
A138107
Infinite square array: T(n,k) = number of directed multigraphs with loops with n arcs and k vertices; read by falling antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 6, 1, 0, 1, 2, 10, 10, 1, 0, 1, 2, 11, 31, 19, 1, 0, 1, 2, 11, 47, 90, 28, 1, 0, 1, 2, 11, 51, 198, 222, 44, 1, 0, 1, 2, 11, 52, 269, 713, 520, 60, 1, 0, 1, 2, 11, 52, 291, 1270, 2423, 1090, 85, 1, 0, 1, 2, 11, 52, 295, 1596, 5776, 7388, 2180, 110, 1, 0
Offset: 0
The array begins:
1, 1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, 2, ...
0, 1, 6, 10, 11, 11, 11, 11, 11, ...
0, 1, 10, 31, 47, 51, 52, 52, 52, ...
0, 1, 19, 90, 198, 269, 291, 295, 296, 296, ...
0, 1, 28, 222, 713, 1270, 1596, 1697, 1719, 1723, ...
0, 1, 44, 520, 2423, 5776, 8838, 10425, 10922, ...
0, 1, 60, 1090, 7388, 24032, 46384, ...
0, 1, 85, 2180, 21003, 93067, ...
0, 1, 110, 4090, ...
...
-
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
{my(A=T(10)); for(n=1, #A, print(A[n,]))} \\ Andrew Howroyd, Oct 22 2019
A052171
Number of directed multigraphs with loops on an infinite set of nodes containing a total of n arcs.
Original entry on oeis.org
1, 2, 11, 52, 296, 1724, 11060, 74527, 533046, 3999187, 31412182, 257150093, 2188063401, 19299062896, 176059781439, 1657961491087, 16089088019098, 160643776819423, 1648068916722737, 17351137043998280, 187255329043638437, 2069426416836401375, 23397468305569068113, 270406562951254606048, 3191908298072118225550, 38454691427657997701136
Offset: 0
- Andrew Howroyd, Table of n, a(n) for n = 0..50
- Banglei Guan, Ji Zhao, and Laurent Kneip, Six-Point Method for Multi-Camera Systems with Reduced Solution Space, arXiv:2402.18066 [cs.CV], 2024. See p. 10.
- J.-C. Novelli, J.-Y. Thibon and N. M. Thiery, Algèbres de Hopf de graphes, C.R. Acad. Sci. Paris (Comptes Rendus Mathématique), 339 (2004), 607-610.
- Sanjaye Ramgoolam, Permutation Invariant Gaussian Matrix Models, arXiv:1809.07559 [hep-th], 2018.
A139621
Triangle read by rows: T(n,k) is the number of connected directed multigraphs with loops and no vertex of degree 0, with n arcs and k vertices.
Original entry on oeis.org
1, 1, 1, 1, 4, 3, 1, 8, 15, 8, 1, 16, 57, 66, 27, 1, 25, 163, 353, 295, 91, 1, 40, 419, 1504, 2203, 1407, 350, 1, 56, 932, 5302, 12382, 13372, 6790, 1376, 1, 80, 1940, 16549, 58237, 96456, 80736, 33628, 5743, 1, 105, 3743, 46566, 237904, 573963, 717114, 482730, 168645, 24635
Offset: 0
Triangle begins:
1
1 1
1 4 3
1 8 15 8
1 16 57 66 27
1 25 163 353 295 91
1 40 419 1504 2203 1407 350
1 56 932 5302 12382 13372 6790 1376
T(2 arcs, 2 vertices) = 4: one graph 1->1, 2->1; one graph with 1->1, 1->2; one graph with 2->1, 2->1, one graph with 1->2, 2->1.
T(2 arcs, 3 vertices) = 3: one graph 2->1, 3->1; one graph 2->1, 3->2; one graph 2->1, 2->3.
-
InvEulerMT(u)={my(n=#u, p=log(1+x*Ser(u)), vars=variables(p)); Vec(serchop( sum(i=1, n, moebius(i)*substvec(p + O(x*x^(n\i)), vars, apply(v->v^i,vars))/i), 1))}
permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
T(n)={Mat([Col(p+O(y^n), -n) | p<-InvEulerMT(vector(n, k, G(k, y + O(y^n))))])}
{my(A=T(10)); for(n=1, #A, print(A[n,1..n]))} \\ Andrew Howroyd, Oct 22 2019
Prepended a(0)=1 to have a regular triangle,
Joerg Arndt, Apr 14 2013
A139622
Triangle read by rows: T(n,k) is the number of strongly connected directed multigraphs with loops, with n arcs and k vertices.
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 6, 4, 1, 1, 10, 19, 6, 1, 1, 19, 73, 59, 9, 1, 1, 28, 208, 350, 138, 12, 1, 1, 44, 534, 1670, 1361, 301, 16, 1, 1, 60, 1215, 6476, 9724, 4364, 575, 20, 1, 1, 85, 2542, 21898, 55707, 45284, 12131, 1042, 25, 1, 1, 110, 4951, 65789, 268329, 365063, 175416, 30090, 1749, 30, 1
Offset: 1
Triangle begins:
1
1 1
1 2 1
1 6 4 1
1 10 19 6 1
1 19 73 59 9 1
1 28 208 350 138 12 1
1 44 534 1670 1361 301 16 1
...
T(4 edges, 2 vertices)=6: one graph 1->1, 1->1, 2->1, 1->2; one graph 1->1, 2->1, 2->1, 1->2; one graph 1->1, 1->2, 1->2, 2->1; one graph 1->1, 1->2, 2->1, 2->2; one graph 2->1, 2->1, 2->1, 1->2; one graph 1->2, 1->2, 2->1, 2->1.
T(4 edges, 3 vertices)=4: one graph 1->1, 2->1, 3->2, 1->3; one graph 2->1, 2->1, 3->2, 1->3; one graph 2->1, 3->1, 1->2, 1->3; one graph 2->1, 3->1, 1->2, 2->3.
A139623
Table read by rows: T(n,k) is the number of directed multigraphs with loops and no vertex of degree 0, with n arcs and k vertices, which are transitive (the existence of a path between two points implies the existence of an arc between those two points).
Original entry on oeis.org
1, 1, 1, 4, 3, 1, 1, 7, 12, 9, 3, 1, 1, 13
Offset: 1
Triangle begins
1, 1;
1, 4, 3, 1;
1, 7, 12, 9, 3, 1;
A327615
Irregular triangle read by rows: T(n,k) is the number of unlabeled multigraphs with loops allowed and n edges covering k vertices, n >= 1, 1 <= k <= 2*n.
Original entry on oeis.org
1, 1, 1, 3, 2, 1, 1, 5, 8, 6, 2, 1, 1, 8, 19, 25, 16, 7, 2, 1, 1, 11, 40, 73, 73, 47, 19, 7, 2, 1, 1, 15, 77, 194, 263, 232, 133, 58, 20, 7, 2, 1, 1, 19, 132, 454, 835, 951, 719, 397, 164, 61, 20, 7, 2, 1, 1, 24, 217, 984, 2385, 3507, 3365, 2306, 1177, 490, 175, 62, 20, 7, 2, 1
Offset: 1
Triangle begins:
1, 1;
1, 3, 2, 1;
1, 5, 8, 6, 2, 1;
1, 8, 19, 25, 16, 7, 2, 1;
1, 11, 40, 73, 73, 47, 19, 7, 2, 1;
1, 15, 77, 194, 263, 232, 133, 58, 20, 7, 2, 1;
1, 19, 132, 454, 835, 951, 719, 397, 164, 61, 20, 7, 2, 1;
...
-
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
edges(v, t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i], v[j])); t(v[i]*v[j]/g)^g )) * prod(i=1, #v, my(c=v[i]); t(c)^((c+1)\2)*if(c%2, 1, t(c/2)))}
C(n,m)={my(s=O(x*x^m)); forpart(p=n, s+=permcount(p)/edges(p, i->1-x^i+O(x*x^m))); Col(s/n!)}
T(m) = {my(n=2*m, A=Mat(vector(n+1, n, C(n-1,m)))); A[2..m+1, 2..n+1]-A[2..m+1, 1..n]}
{ my(A=T(8)); for(n=1, matsize(A)[1], print(A[n, 1..2*n])) }
Showing 1-7 of 7 results.
Comments