cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A138107 Infinite square array: T(n,k) = number of directed multigraphs with loops with n arcs and k vertices; read by falling antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 2, 1, 0, 1, 2, 6, 1, 0, 1, 2, 10, 10, 1, 0, 1, 2, 11, 31, 19, 1, 0, 1, 2, 11, 47, 90, 28, 1, 0, 1, 2, 11, 51, 198, 222, 44, 1, 0, 1, 2, 11, 52, 269, 713, 520, 60, 1, 0, 1, 2, 11, 52, 291, 1270, 2423, 1090, 85, 1, 0, 1, 2, 11, 52, 295, 1596, 5776, 7388, 2180, 110, 1, 0
Offset: 0

Views

Author

Benoit Jubin, May 03 2008

Keywords

Comments

Partial sums of the rows of A136564.

Examples

			The array begins:
   1, 1,   1,    1,     1,     1,     1,     1,     1, ...
   0, 1,   2,    2,     2,     2,     2,     2,     2, ...
   0, 1,   6,   10,    11,    11,    11,    11,    11, ...
   0, 1,  10,   31,    47,    51,    52,    52,    52, ...
   0, 1,  19,   90,   198,   269,   291,   295,   296,  296, ...
   0, 1,  28,  222,   713,  1270,  1596,  1697,  1719, 1723, ...
   0, 1,  44,  520,  2423,  5776,  8838, 10425, 10922, ...
   0, 1,  60, 1090,  7388, 24032, 46384, ...
   0, 1,  85, 2180, 21003, 93067, ...
   0, 1, 110, 4090, ...
   ...
		

Crossrefs

Columns k=0..4 are: A000007, A000012, A005993, A050927, A050929.
Main diagonal is A362387.

Programs

  • PARI
    permcount(v) = {my(m=1,s=0,k=0,t); for(i=1,#v,t=v[i]; k=if(i>1&&t==v[i-1],k+1,1); m*=t*k;s+=t); s!/m}
    edges(v,t) = {prod(i=2, #v, prod(j=1, i-1, my(g=gcd(v[i],v[j])); t(v[i]*v[j]/g)^(2*g))) * prod(i=1, #v, t(v[i])^v[i])}
    G(n, x)={my(s=0); forpart(p=n, s+=permcount(p)/edges(p,i->1-x^i)); s/n!}
    T(n)={Mat(vector(n+1, k, Col(O(y*y^n) + G(k-1, y + O(y*y^n)))))}
    {my(A=T(10)); for(n=1, #A, print(A[n,]))} \\ Andrew Howroyd, Oct 22 2019

Formula

T(n,k) = Sum_{p=0..k} A136564(n,p).
If k >= 2n, T(n,k) = A052171(n).

Extensions

More terms from Vladeta Jovovic and Benoit Jubin, Sep 10 2008

A052171 Number of directed multigraphs with loops on an infinite set of nodes containing a total of n arcs.

Original entry on oeis.org

1, 2, 11, 52, 296, 1724, 11060, 74527, 533046, 3999187, 31412182, 257150093, 2188063401, 19299062896, 176059781439, 1657961491087, 16089088019098, 160643776819423, 1648068916722737, 17351137043998280, 187255329043638437, 2069426416836401375, 23397468305569068113, 270406562951254606048, 3191908298072118225550, 38454691427657997701136
Offset: 0

Views

Author

Vladeta Jovovic, Jan 26 2000

Keywords

Comments

Row sums of A136564, limiting values of A138107. - Benoit Jubin, May 13 2008
Euler transform of A137975. - M. F. Hasler, Jul 31 2017

Crossrefs

Cf. A104209. Cf. A137975 (connected).

Formula

a(n) = A138107(2*n,n). - Max Alekseyev, Oct 17 2017

Extensions

a(16)-a(25) from Max Alekseyev, Jun 21 2011

A136564 Array read by rows: T(n,k) is the number of directed multigraphs with loops with n arcs, k vertices, and no vertex of degree 0.

Original entry on oeis.org

1, 1, 1, 5, 4, 1, 1, 9, 21, 16, 4, 1, 1, 18, 71, 108, 71, 22, 4, 1, 1, 27, 194, 491, 557, 326, 101, 22, 4, 1, 1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1, 1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1, 1, 84, 2095, 18823, 72064
Offset: 1

Views

Author

Benoit Jubin, Apr 14 2008

Keywords

Comments

Length of the n^th row: 2n.

Examples

			1, 1;
1, 5, 4, 1;
1, 9, 21, 16, 4, 1;
1, 18, 71, 108, 71, 22, 4, 1;
1, 27, 194, 491, 557, 326, 101, 22, 4, 1;
1, 43, 476, 1903, 3353, 3062, 1587, 497, 111, 22, 4, 1;
1, 59, 1030, 6298, 16644, 22352, 17035, 7982, 2433, 555, 111, 22, 4, 1;
		

Crossrefs

Row sums: A052171. Partial row sums: A138107.
Sums of the first m entries of each row: A005993 (m=2), A050927 (m=3), A050929 (m=4).

Formula

T(n,1) = 1 if n > 0.
T(n,2n) = 1 if n > 0.
T(n,2n-1) = 4 if n >= 2.
T(n,2n-k) = A144047(k) for n large enough (conjecturally, n >= 2k is enough).
T(n,2) = (n^3 + 6*n^2 + 11*n - 6)/12 + ((n+2)/4)[n even]. (the bracket means that the second term is added if and only if n is even). - Benoit Jubin, Mar 31 2012

Extensions

More terms from Benoit Jubin and Vladeta Jovovic, Sep 08 2008

A139625 Table read by rows: T(n,k) is the number of strongly connected directed multigraphs with loops and no vertex of degree 0, with n arcs and k vertices, which are transitive (the existence of a path between two points implies the existence of an arc between those two points).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 2, 1, 6, 1, 10, 1, 19, 1, 28, 1, 1, 44, 2, 1, 60, 10, 1, 85, 31, 1, 110, 90, 1, 146, 222, 1, 182, 520, 1, 231, 1090, 1, 1, 280, 2180, 2, 1, 344, 4090, 11, 1
Offset: 1

Views

Author

Benoit Jubin, May 01 2008, Sep 01 2008

Keywords

Comments

Length of the n^th row: floor(sqrt(n)).
These graphs are reflexive (each vertex has a self-loop), so T(n,k) = sum(A139621(n-k^2,m),m=0..k)
T(n,1) = 1, T(n,2) = A005993(n-4), T(n,3) = A050927(n-9), T(n,4) = A050929(n-16).
Row sums: A139630.

Examples

			Triangle begins:
  1
  1
  1
  1  1
  1  2
  1  6
  1 10
  1 19
  1 28  1
		

Crossrefs

Showing 1-4 of 4 results.