A215241
Unsigned matrix inverse of triangle A214398, as a triangle read by rows n >= 1.
Original entry on oeis.org
1, 1, 1, 3, 4, 1, 18, 26, 9, 1, 172, 256, 99, 16, 1, 2313, 3489, 1416, 264, 25, 1, 40626, 61696, 25650, 5120, 575, 36, 1, 887326, 1352518, 569772, 117980, 14450, 1098, 49, 1, 23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1, 715540140, 1094499820, 466865280, 100049120, 13259705, 1186857, 73696, 3104, 81, 1
Offset: 1
Triangle begins:
1;
1, 1;
3, 4, 1;
18, 26, 9, 1;
172, 256, 99, 16, 1;
2313, 3489, 1416, 264, 25, 1;
40626, 61696, 25650, 5120, 575, 36, 1;
887326, 1352518, 569772, 117980, 14450, 1098, 49, 1;
23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1;
...
The matrix inverse is a signed version of triangle A214398:
1;
-1, 1;
1, -4, 1;
-1, 10, -9, 1;
1, -20, 45, -16, 1;
-1, 35, -165, 136, -25, 1;
1, -56, 495, -816, 325, -36, 1;
-1, 84, -1287, 3876, -2925, 666, -49, 1; ...
in which the g.f. of column k is 1/(1+x)^(k^2) for k >= 1.
ILLUSTRATE G.F. OF COLUMNS:
k=1: 1 = 1/(1+x) + 1*x/(1+x)^4 + 3*x^2/(1+x)^9 + 18*x^3/(1+x)^16 + 172*x^4/(1+x)^25 + 2313*x^5/(1+x)^36 + 40626*x^6/(1+x)^49 + ...
k=2: 1 = 1/(1+x)^4 + 4*x/(1+x)^9 + 26*x^2/(1+x)^16 + 256*x^3/(1+x)^25 + 3489*x^4/(1+x)^36 + 61696*x^5/(1+x)^49 + ...
k=3: 1 = 1/(1+x)^9 + 9*x/(1+x)^16 + 99*x^2/(1+x)^25 + 1416*x^3/(1+x)^36 + 25650*x^4/(1+x)^49 + ...
k=4: 1 = 1/(1+x)^16 + 16*x/(1+x)^25 + 264*x^2/(1+x)^36 + 5120*x^3/(1+x)^49 + ...
Cf.
A214398 (unsigned matrix inverse).
-
T[n_, k_] := Module[{M}, M = Table[Binomial[c^2 + r - c - 1, r - c], {r, 1, n}, {c, 1, n}]; (-1)^(n - k) Inverse[M][[n, k]]];
Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 05 2023, after PARI program *)
-
{T(n, k)=local(M=matrix(n,n,r,c,binomial(c^2+r-c-1, r-c)));(-1)^(n-k)*(M^-1)[n,k]}
for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")); print(""))
A318795
Array read by antidiagonals: T(n,k) is the number of inequivalent nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 5, 4, 1, 1, 11, 10, 4, 1, 1, 14, 24, 10, 4, 1, 1, 24, 51, 33, 10, 4, 1, 1, 30, 114, 78, 33, 10, 4, 1, 1, 45, 219, 224, 91, 33, 10, 4, 1, 1, 55, 424, 549, 277, 91, 33, 10, 4, 1, 1, 76, 768, 1403, 792, 298, 91, 33, 10, 4, 1, 1, 91, 1352, 3292, 2341, 881, 298, 91, 33, 10, 4, 1
Offset: 1
Array begins:
===========================================================
n\k| 1 2 3 4 5 6 7 8 9 10 11 12
---+-------------------------------------------------------
1 | 1 1 1 1 1 1 1 1 1 1 1 1 ...
2 | 1 4 5 11 14 24 30 45 55 76 91 119 ...
3 | 1 4 10 24 51 114 219 424 768 1352 2278 3759 ...
4 | 1 4 10 33 78 224 549 1403 3292 7677 16934 36581 ...
5 | 1 4 10 33 91 277 792 2341 6654 18802 51508 138147 ...
6 | 1 4 10 33 91 298 881 2825 8791 27947 87410 272991 ...
7 | 1 4 10 33 91 298 910 2974 9655 32287 108274 367489 ...
8 | 1 4 10 33 91 298 910 3017 9886 33767 116325 410298 ...
9 | 1 4 10 33 91 298 910 3017 9945 34124 118729 424498 ...
...
-
permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
M[m_, n_, k_] := Module[{s=0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
Table[M[n-k+1, n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 12 2018, after Andrew Howroyd *)
-
\\ see also link.
permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
K(q, t, k)={1/prod(j=1, #q, (1-y^lcm(t,q[j]) + O(y*y^k))^gcd(t, q[j]))}
M(m, n, k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoef(polcoef(exp(sum(t=1, n, K(q, t, k)/t*x^t) + O(x*x^n)), n), k)); s/m!}
for(n=1, 10, for(k=1, 12, print1(M(n, n, k), ", ")); print); \\ updated Andrew Howroyd, Mar 29 2020
A178325
G.f.: A(x) = Sum_{n>=0} x^n/(1-x)^(n^2).
Original entry on oeis.org
1, 1, 2, 6, 21, 83, 363, 1730, 8889, 48829, 284858, 1755325, 11374092, 77208275, 547261631, 4039201624, 30967330941, 246084049137, 2023030659970, 17175765057532, 150367445873108, 1355528352031358, 12566899017130088
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 83*x^5 + 363*x^6 +...
A(x) = 1 + (x-x^2)*((1-x)-x)/((1-x)^3-x) + (x-x^2)^2*((1-x)-x)*((1-x)^5-x)/(((1-x)^3-x)*((1-x)^7-x)) + (x-x^2)^3*((1-x)-x)*((1-x)^5-x)*((1-x)^9-x)/(((1-x)^3-x)*((1-x)^7-x)*((1-x)^11-x)) +...
-
nn=22;CoefficientList[Series[Sum[x^k/(1-x)^(k^2),{k,0,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Oct 09 2013 *)
-
{a(n)=sum(k=0,n,binomial((n-k)^2+k-1,k))}
-
{a(n)=polcoeff(sum(m=0,n,x^m/(1-x+x*O(x^n))^(m^2)),n)}
-
{a(n)=polcoeff(sum(m=0,n,(x-x^2)^m*prod(k=1,m,((1-x)^(4*k-3)-x)/((1-x)^(4*k-1)-x +x*O(x^n)))),n)}
A214400
a(n) = binomial(n^2 + 3*n, n).
Original entry on oeis.org
1, 4, 45, 816, 20475, 658008, 25827165, 1198774720, 64276915527, 3911395881900, 266401260897200, 20082459351180240, 1660305826125766950, 149389005978091284720, 14533945899753270066525, 1520398315196482557890304, 170190601112537814791748255
Offset: 0
-
seq(binomial(n^2+3*n,n),n=0..30); # Robert Israel, Mar 04 2022
-
a(n)=binomial(n^2+3*n, n)
A214403
Triangle, read by rows of terms T(n,k) for k=0..n^2, that starts with a '1' in row 0 with row n>0 consisting of 2*n-1 '1's followed by the partial sums of the prior row.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 47, 62, 83, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 55, 68, 85, 107, 135, 171, 218, 280, 363
Offset: 0
Triangle begins:
[1];
[1, 1];
[1,1,1, 1, 2];
[1,1,1,1,1, 1,2,3, 4, 6];
[1,1,1,1,1,1,1, 1,2,3,4,5, 6,8,11, 15, 21];
[1,1,1,1,1,1,1,1,1, 1,2,3,4,5,6,7, 8,10,13,17,22, 28,36,47, 62, 83];
...
Row sums equal the row sums (A178325) of triangle A214398,
where A214398(n, k) = binomial(k^2+n-k-1, n-k):
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1;
...
-
{T(n, k)=if(k>n^2||n<0||k<0, 0, if(n==0,1,if(k<=2*n-1, 1, sum(i=0, k-2*n+1, T(n-1, i)))))}
for(n=0,10,for(k=0,n^2,print1(T(n,k),", "));print(""))
Showing 1-5 of 5 results.
Comments