cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A215241 Unsigned matrix inverse of triangle A214398, as a triangle read by rows n >= 1.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 18, 26, 9, 1, 172, 256, 99, 16, 1, 2313, 3489, 1416, 264, 25, 1, 40626, 61696, 25650, 5120, 575, 36, 1, 887326, 1352518, 569772, 117980, 14450, 1098, 49, 1, 23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1, 715540140, 1094499820, 466865280, 100049120, 13259705, 1186857, 73696, 3104, 81, 1
Offset: 1

Views

Author

Paul D. Hanna, Aug 06 2012

Keywords

Examples

			Triangle begins:
         1;
         1,        1;
         3,        4,        1;
        18,       26,        9,       1;
       172,      256,       99,      16,      1;
      2313,     3489,     1416,     264,     25,     1;
     40626,    61696,    25650,    5120,    575,    36,    1;
    887326,  1352518,   569772,  117980,  14450,  1098,   49,  1;
  23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1;
  ...
The matrix inverse is a signed version of triangle A214398:
   1;
  -1,   1;
   1,  -4,     1;
  -1,  10,    -9,    1;
   1, -20,    45,  -16,     1;
  -1,  35,  -165,  136,   -25,   1;
   1, -56,   495, -816,   325, -36,   1;
  -1,  84, -1287, 3876, -2925, 666, -49, 1; ...
in which the g.f. of column k is 1/(1+x)^(k^2) for k >= 1.
ILLUSTRATE G.F. OF COLUMNS:
k=1: 1 = 1/(1+x) + 1*x/(1+x)^4 + 3*x^2/(1+x)^9 + 18*x^3/(1+x)^16 + 172*x^4/(1+x)^25 + 2313*x^5/(1+x)^36 + 40626*x^6/(1+x)^49 + ...
k=2: 1 = 1/(1+x)^4 + 4*x/(1+x)^9 + 26*x^2/(1+x)^16 + 256*x^3/(1+x)^25 + 3489*x^4/(1+x)^36 + 61696*x^5/(1+x)^49 + ...
k=3: 1 = 1/(1+x)^9 + 9*x/(1+x)^16 + 99*x^2/(1+x)^25 + 1416*x^3/(1+x)^36 + 25650*x^4/(1+x)^49 + ...
k=4: 1 = 1/(1+x)^16 + 16*x/(1+x)^25 + 264*x^2/(1+x)^36 + 5120*x^3/(1+x)^49 + ...
		

Crossrefs

Cf. A177447 (column 1), A215242 (column 2), A215243 (column 3); A133316 (row sums).
Cf. A214398 (unsigned matrix inverse).

Programs

  • Mathematica
    T[n_, k_] := Module[{M}, M = Table[Binomial[c^2 + r - c - 1, r - c], {r, 1, n}, {c, 1, n}]; (-1)^(n - k) Inverse[M][[n, k]]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 05 2023, after PARI program *)
  • PARI
    {T(n, k)=local(M=matrix(n,n,r,c,binomial(c^2+r-c-1, r-c)));(-1)^(n-k)*(M^-1)[n,k]}
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")); print(""))

Formula

G.f.: x*y/(1-x*y) = Sum_{n>=1} Sum_{k=1..n} T(n,k)*x^n*y^k/(1+x)^(n^2).
G.f. of column k: 1 = Sum_{n>=k} T(n,k)*x^(n-k)/(1+x)^(n^2).
Column 1 forms A177447.
Row sums form A133316.

A318795 Array read by antidiagonals: T(n,k) is the number of inequivalent nonnegative integer n X n matrices with sum of elements equal to k, under row and column permutations.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 5, 4, 1, 1, 11, 10, 4, 1, 1, 14, 24, 10, 4, 1, 1, 24, 51, 33, 10, 4, 1, 1, 30, 114, 78, 33, 10, 4, 1, 1, 45, 219, 224, 91, 33, 10, 4, 1, 1, 55, 424, 549, 277, 91, 33, 10, 4, 1, 1, 76, 768, 1403, 792, 298, 91, 33, 10, 4, 1, 1, 91, 1352, 3292, 2341, 881, 298, 91, 33, 10, 4, 1
Offset: 1

Views

Author

Andrew Howroyd, Sep 03 2018

Keywords

Examples

			Array begins:
===========================================================
n\k| 1 2  3  4  5   6   7    8    9    10     11     12
---+-------------------------------------------------------
1  | 1 1  1  1  1   1   1    1    1     1      1      1 ...
2  | 1 4  5 11 14  24  30   45   55    76     91    119 ...
3  | 1 4 10 24 51 114 219  424  768  1352   2278   3759 ...
4  | 1 4 10 33 78 224 549 1403 3292  7677  16934  36581 ...
5  | 1 4 10 33 91 277 792 2341 6654 18802  51508 138147 ...
6  | 1 4 10 33 91 298 881 2825 8791 27947  87410 272991 ...
7  | 1 4 10 33 91 298 910 2974 9655 32287 108274 367489 ...
8  | 1 4 10 33 91 298 910 3017 9886 33767 116325 410298 ...
9  | 1 4 10 33 91 298 910 3017 9945 34124 118729 424498 ...
...
		

Crossrefs

Main diagonal is A007716.

Programs

  • Mathematica
    permcount[v_List] := Module[{m = 1, s = 0, k = 0, t}, For[i = 1, i <= Length[v], i++, t = v[[i]]; k = If[i > 1 && t == v[[i - 1]], k + 1, 1]; m *= t*k; s += t]; s!/m];
    c[p_List, q_List, k_] := SeriesCoefficient[1/Product[(1 - x^LCM[p[[i]], q[[j]]])^GCD[p[[i]], q[[j]]], {j, 1, Length[q]}, {i, 1, Length[p]}], {x, 0, k}];
    M[m_, n_, k_] := Module[{s=0}, Do[Do[s += permcount[p]*permcount[q]*c[p, q, k], {q, IntegerPartitions[n]}], {p, IntegerPartitions[m]}]; s/(m!*n!)];
    Table[M[n-k+1, n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Sep 12 2018, after Andrew Howroyd *)
  • PARI
    \\ see also link.
    permcount(v) = {my(m=1, s=0, k=0, t); for(i=1, #v, t=v[i]; k=if(i>1&&t==v[i-1], k+1, 1); m*=t*k; s+=t); s!/m}
    K(q, t, k)={1/prod(j=1, #q, (1-y^lcm(t,q[j]) + O(y*y^k))^gcd(t, q[j]))}
    M(m, n, k)={my(s=0); forpart(q=m, s+=permcount(q)*polcoef(polcoef(exp(sum(t=1, n, K(q, t, k)/t*x^t) + O(x*x^n)), n), k)); s/m!}
    for(n=1, 10, for(k=1, 12, print1(M(n, n, k), ", ")); print); \\ updated Andrew Howroyd, Mar 29 2020

Formula

T(n,k) = T(k,k) for n > k.

A178325 G.f.: A(x) = Sum_{n>=0} x^n/(1-x)^(n^2).

Original entry on oeis.org

1, 1, 2, 6, 21, 83, 363, 1730, 8889, 48829, 284858, 1755325, 11374092, 77208275, 547261631, 4039201624, 30967330941, 246084049137, 2023030659970, 17175765057532, 150367445873108, 1355528352031358, 12566899017130088
Offset: 0

Views

Author

Paul D. Hanna, Dec 21 2010

Keywords

Comments

Equals the row sums of triangle A214398.
a(n) is the number of weak compositions of n such that if the first part is equal to k then there are a total of k^2 + 1 parts. A weak composition is an ordered partition of the integer n into nonnegative parts. a(3) = 6 because we have: 1+2, 2+0+0+0+1, 2+0+0+1+0, 2+0+1+0+0, 2+1+0+0+0, 3+0+0+0+0+0+0+0+0+0. - Geoffrey Critzer, Oct 09 2013

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 83*x^5 + 363*x^6 +...
A(x) = 1 + (x-x^2)*((1-x)-x)/((1-x)^3-x) + (x-x^2)^2*((1-x)-x)*((1-x)^5-x)/(((1-x)^3-x)*((1-x)^7-x)) + (x-x^2)^3*((1-x)-x)*((1-x)^5-x)*((1-x)^9-x)/(((1-x)^3-x)*((1-x)^7-x)*((1-x)^11-x)) +...
		

Crossrefs

Programs

  • Mathematica
    nn=22;CoefficientList[Series[Sum[x^k/(1-x)^(k^2),{k,0,nn}],{x,0,nn}],x]  (* Geoffrey Critzer, Oct 09 2013 *)
  • PARI
    {a(n)=sum(k=0,n,binomial((n-k)^2+k-1,k))}
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,x^m/(1-x+x*O(x^n))^(m^2)),n)}
    
  • PARI
    {a(n)=polcoeff(sum(m=0,n,(x-x^2)^m*prod(k=1,m,((1-x)^(4*k-3)-x)/((1-x)^(4*k-1)-x +x*O(x^n)))),n)}

Formula

a(n) = Sum_{k=0..n} C((n-k)^2 + k-1, k).
G.f.: A(x) = Sum_{n>=0} (x-x^2)^n*Product_{k=1..n} ((1-x)^(4*k-3) - x)/((1-x)^(4*k-1) - x) due to a q-series identity.
Let q = 1/(1-x), then g.f. A(x) equals the continued fraction:
. A(x) = 1/(1- q*x/(1- q*(q^2-1)*x/(1- q^5*x/(1- q^3*(q^4-1)*x/(1- q^9*x/(1- q^5*(q^6-1)*x/(1- q^13*x/(1- q^7*(q^8-1)*x/(1- ...)))))))))
due to an identity of a partial elliptic theta function.
log(a(n)) ~ n*(log(n) - 2) * (1 + log(4*n) - log((log(n) - 2)*log(n))) / log(n). - Vaclav Kotesovec, Jan 10 2023

A214400 a(n) = binomial(n^2 + 3*n, n).

Original entry on oeis.org

1, 4, 45, 816, 20475, 658008, 25827165, 1198774720, 64276915527, 3911395881900, 266401260897200, 20082459351180240, 1660305826125766950, 149389005978091284720, 14533945899753270066525, 1520398315196482557890304, 170190601112537814791748255
Offset: 0

Views

Author

Paul D. Hanna, Jul 15 2012

Keywords

Comments

Equals the central terms of triangle A214398.

Crossrefs

Programs

  • Maple
    seq(binomial(n^2+3*n,n),n=0..30); # Robert Israel, Mar 04 2022
  • PARI
    a(n)=binomial(n^2+3*n, n)

Formula

a(n) = [x^n] 1/(1 - x)^((n+1)^2). - Ilya Gutkovskiy, Oct 04 2017
a(n) ~ n^(n-1/2)*exp(n+5/2)/sqrt(2*Pi). - Robert Israel, Mar 04 2022

A214403 Triangle, read by rows of terms T(n,k) for k=0..n^2, that starts with a '1' in row 0 with row n>0 consisting of 2*n-1 '1's followed by the partial sums of the prior row.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 47, 62, 83, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 55, 68, 85, 107, 135, 171, 218, 280, 363
Offset: 0

Views

Author

Paul D. Hanna, Jul 15 2012

Keywords

Comments

Right border and row sums form A178325.

Examples

			Triangle begins:
  [1];
  [1, 1];
  [1,1,1, 1, 2];
  [1,1,1,1,1, 1,2,3, 4, 6];
  [1,1,1,1,1,1,1, 1,2,3,4,5, 6,8,11, 15, 21];
  [1,1,1,1,1,1,1,1,1, 1,2,3,4,5,6,7, 8,10,13,17,22, 28,36,47, 62, 83];
  ...
Row sums equal the row sums (A178325) of triangle A214398,
where A214398(n, k) = binomial(k^2+n-k-1, n-k):
  1;
  1, 1;
  1, 4, 1;
  1, 10, 9, 1;
  1, 20, 45, 16, 1;
  1, 35, 165, 136, 25, 1;
  1, 56, 495, 816, 325, 36, 1;
  1, 84, 1287, 3876, 2925, 666, 49, 1;
  ...
		

Crossrefs

Programs

  • PARI
    {T(n, k)=if(k>n^2||n<0||k<0, 0, if(n==0,1,if(k<=2*n-1, 1, sum(i=0, k-2*n+1, T(n-1, i)))))}
    for(n=0,10,for(k=0,n^2,print1(T(n,k),", "));print(""))
Showing 1-5 of 5 results.