cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A177447 G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(n^2) = 1+x.

Original entry on oeis.org

1, 1, 1, 3, 18, 172, 2313, 40626, 887326, 23282964, 715540140, 25259729071, 1008721104654, 45008479039824, 2221170817590696, 120209722115431950, 7083266027910364710, 451620678137942740132, 30990400538494184551692, 2277988537997377457967690, 178626191260072536476398000
Offset: 0

Views

Author

Paul D. Hanna, May 09 2010

Keywords

Comments

Column 1 of triangle A215241.

Examples

			1+x = 1 + 1*x/(1+x) + 1*x^2/(1+x)^4 + 3*x^3/(1+x)^9 + 18*x^4/(1+x)^16 + 172*x^5/(1+x)^25 + 2313*x^6/(1+x)^36 +...
Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 2n+1 times, starting with a '1' in row 0, as illustrated by:
  1;
  1, 1,  1;
  1, 2,  3,  3,  3,   3,   3;
  1, 3,  6,  9, 12,  15,  18,  18,  18,  18,  18,  18,  18;
  1, 4, 10, 19, 31,  46,  64,  82, 100, 118, 136, 154, 172,  172,  172,  172,  172,  172,  172,  172,  172;
  1, 5, 15, 34, 65, 111, 175, 257, 357, 475, 611, 765, 937, 1109, 1281, 1453, 1625, 1797, 1969, 2141, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 2313; ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(a(j)
          *(-1)^(n-j)*binomial(1 +j*(j-1), n-j), j=0..n-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 10 2022
  • PARI
    {a(n)=local(F=1/(1+x+x*O(x^n)));polcoeff(1+x-sum(k=0,n-1,a(k)*x^k*F^(k^2)),n)}
    
  • PARI
    {A=[1,1];for(i=1,40,A=concat(A,-Vec(sum(n=0,#A-1,A[n+1]*x^n/(1+x+x*O(x^#A))^(n^2)))[#A+1]));for(n=0,#A-1,print1(A[n+1],", "))}

Formula

a(n) = number of subpartitions of the partition [0,0,2,6,12,...,(n-1)^2-(n-1)] for n>0 with a(0)=1. See A115728 for the definition of subpartitions.
Generating functions:
(1) 1 + x = Sum_{n>=0} a(n) * x^n / (1+x)^(n^2).
(2) 1/(1-x) = Sum_{n>=0} a(n) * x^n * (1-x)^(n*(n-1)). - Paul D. Hanna, Apr 04 2022

A133316 G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n/(1+x)^(n^2).

Original entry on oeis.org

1, 1, 2, 8, 54, 544, 7508, 133704, 2943194, 77589536, 2391477804, 84582890704, 3382005372970, 151034046369696, 7458091839548356, 403808650013237224, 23801728042233670770, 1517930142778063770304, 104179592763803229618620
Offset: 0

Views

Author

Paul D. Hanna, Dec 24 2010

Keywords

Examples

			1/(1-x) = 1 + x/(1+x) + 2*x^2/(1+x)^4 + 8*x^3/(1+x)^9 + 54*x^4/(1+x)^16 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(-(1-x)*sum(m=0,n-1,a(m)*x^m/(1+x +x*O(x^n))^(m^2)),n))}
    
  • PARI
    {a(n)=if(n==0, 1, 1 - sum(j=0, n-1, a(j)*(-1)^(n-j)*binomial(j^2+n-j-1, n-j)))}

Formula

a(n) = 1 - Sum_{j=0..n-1} a(j) * (-1)^(n-j) * C(j^2 + n-j-1, n-j) for n>0, with a(0)=1.

A215242 G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^((n+2)^2).

Original entry on oeis.org

1, 4, 26, 256, 3489, 61696, 1352518, 35566368, 1094499820, 38670814348, 1545160614694, 68970980789472, 3404652821768232, 184295822142051600, 10861040169788302030, 692560292664515634112, 47527552597795293035916, 3493783983256399634130360, 273974326317024551368217200
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2012

Keywords

Comments

Column 2 of triangle A215241.

Examples

			G.f.: 1 = 1/(1+x)^4 + 4*x/(1+x)^9 + 26*x^2/(1+x)^16 + 256*x^3/(1+x)^25 + 3489*x^4/(1+x)^36 + 61696*x^5/(1+x)^49 +...
Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 2*n+1 times, starting with '[1,1,1,1]' in row 1, as illustrated by:
1, 1,  1,  1;
1, 2,  3,  4,  4,   4,   4,   4;
1, 3,  6, 10, 14,  18,  22,  26,  26,  26,  26,  26,  26,   26;
1, 4, 10, 20, 34,  52,  74, 100, 126, 152, 178, 204, 230,  256,  256,  256,  256,  256,  256,  256,  256,  256;
1, 5, 15, 35, 69, 121, 195, 295, 421, 573, 751, 955, 1185, 1441, 1697, 1953, 2209, 2465, 2721, 2977, 3233, 3489, 3489, 3489, 3489, 3489, 3489, 3489, 3489, 3489; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+x+x*O(x^n))^((k+2)^2)), n))}
    for(n=0,21,print1(a(n)", "))

A215243 G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^((n+3)^2).

Original entry on oeis.org

1, 9, 99, 1416, 25650, 569772, 15099042, 466865280, 16545757617, 662459717350, 29611195466373, 1463138718427008, 79255793863426950, 4673128560507694980, 298096897542679853190, 20462949699720864598464, 1504570012129788012314910, 118004419030927157257862025
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2012

Keywords

Comments

Column 3 of triangle A215241.

Examples

			G.f.: 1 = 1/(1+x)^9 + 9*x/(1+x)^16 + 99*x^2/(1+x)^25 + 1416*x^3/(1+x)^36 + 25650*x^4/(1+x)^49 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+x+x*O(x^n))^((k+3)^2)), n))}
    for(n=0,21,print1(a(n)", "))
Showing 1-4 of 4 results.