cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A133316 G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n/(1+x)^(n^2).

Original entry on oeis.org

1, 1, 2, 8, 54, 544, 7508, 133704, 2943194, 77589536, 2391477804, 84582890704, 3382005372970, 151034046369696, 7458091839548356, 403808650013237224, 23801728042233670770, 1517930142778063770304, 104179592763803229618620
Offset: 0

Views

Author

Paul D. Hanna, Dec 24 2010

Keywords

Examples

			1/(1-x) = 1 + x/(1+x) + 2*x^2/(1+x)^4 + 8*x^3/(1+x)^9 + 54*x^4/(1+x)^16 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(-(1-x)*sum(m=0,n-1,a(m)*x^m/(1+x +x*O(x^n))^(m^2)),n))}
    
  • PARI
    {a(n)=if(n==0, 1, 1 - sum(j=0, n-1, a(j)*(-1)^(n-j)*binomial(j^2+n-j-1, n-j)))}

Formula

a(n) = 1 - Sum_{j=0..n-1} a(j) * (-1)^(n-j) * C(j^2 + n-j-1, n-j) for n>0, with a(0)=1.

A177450 G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(n^2+n) = 1+x.

Original entry on oeis.org

1, 1, 2, 9, 70, 805, 12480, 245847, 5909338, 168310515, 5556486450, 209003251240, 8835266400450, 415094928861530, 21473740362658640, 1213683089969940075, 74446121738526773490, 4927385997649620215895, 350145746700442604768346
Offset: 0

Views

Author

Paul D. Hanna, May 09 2010

Keywords

Examples

			1+x = 1 + 1*x/(1+x)^2 + 2*x^2/(1+x)^6 + 9*x^3/(1+x)^12 + 70*x^4/(1+x)^20 + 805*x^5/(1+x)^30 +...
1/(1-x) = 1 + 1*x*(1-x) + 2*x^2*(1-x)^4 + 9*x^3*(1-x)^9 + 70*x^4*(1-x)^16 + 805*x^5*(1-x)^25 +...
Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 2(n+1) times, starting with a '1' in row 0, as illustrated by:
  1;
  1, 1;
  1, 2,  2,  2,  2;
  1, 3,  5,  7,  9,  9,   9,   9,   9,   9;
  1, 4,  9, 16, 25, 34,  43,  52,  61,  70,  70,  70,  70,  70,  70,  70,  70;
  1, 5, 14, 30, 55, 89, 132, 184, 245, 315, 385, 455, 525, 595, 665, 735, 805, 805, 805, 805, 805, 805, 805, 805, 805, 805;
  ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(a(j)
          *(-1)^(n-j)*binomial(1+ j^2, n-j), j=0..n-1))
        end:
    seq(a(n), n=0..19);  # Alois P. Heinz, Jul 08 2022
  • PARI
    {a(n)=local(F=1/(1+x+x*O(x^n)));polcoeff(1+x-sum(k=0,n-1,a(k)*x^k*F^(k*(k+1))),n)}

Formula

G.f.: Sum_{n>=0} a(n)*x^n*(1-x)^(n^2) = 1/(1-x).
G.f.: Sum_{n>=0} a(n)*x^n*C(-x)^(n^2+2n) = 1/C(-x) where C(x) is the Catalan function of A000108.
a(n) = number of subpartitions of partition consisting of the first n square numbers starting with zero for n>0; e.g., a(4) = subp([0,1,4,9]) = 70. See A115728 for the definition of subpartitions.

A215241 Unsigned matrix inverse of triangle A214398, as a triangle read by rows n >= 1.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 18, 26, 9, 1, 172, 256, 99, 16, 1, 2313, 3489, 1416, 264, 25, 1, 40626, 61696, 25650, 5120, 575, 36, 1, 887326, 1352518, 569772, 117980, 14450, 1098, 49, 1, 23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1, 715540140, 1094499820, 466865280, 100049120, 13259705, 1186857, 73696, 3104, 81, 1
Offset: 1

Views

Author

Paul D. Hanna, Aug 06 2012

Keywords

Examples

			Triangle begins:
         1;
         1,        1;
         3,        4,        1;
        18,       26,        9,       1;
       172,      256,       99,      16,      1;
      2313,     3489,     1416,     264,     25,     1;
     40626,    61696,    25650,    5120,    575,    36,    1;
    887326,  1352518,   569772,  117980,  14450,  1098,   49,  1;
  23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1;
  ...
The matrix inverse is a signed version of triangle A214398:
   1;
  -1,   1;
   1,  -4,     1;
  -1,  10,    -9,    1;
   1, -20,    45,  -16,     1;
  -1,  35,  -165,  136,   -25,   1;
   1, -56,   495, -816,   325, -36,   1;
  -1,  84, -1287, 3876, -2925, 666, -49, 1; ...
in which the g.f. of column k is 1/(1+x)^(k^2) for k >= 1.
ILLUSTRATE G.F. OF COLUMNS:
k=1: 1 = 1/(1+x) + 1*x/(1+x)^4 + 3*x^2/(1+x)^9 + 18*x^3/(1+x)^16 + 172*x^4/(1+x)^25 + 2313*x^5/(1+x)^36 + 40626*x^6/(1+x)^49 + ...
k=2: 1 = 1/(1+x)^4 + 4*x/(1+x)^9 + 26*x^2/(1+x)^16 + 256*x^3/(1+x)^25 + 3489*x^4/(1+x)^36 + 61696*x^5/(1+x)^49 + ...
k=3: 1 = 1/(1+x)^9 + 9*x/(1+x)^16 + 99*x^2/(1+x)^25 + 1416*x^3/(1+x)^36 + 25650*x^4/(1+x)^49 + ...
k=4: 1 = 1/(1+x)^16 + 16*x/(1+x)^25 + 264*x^2/(1+x)^36 + 5120*x^3/(1+x)^49 + ...
		

Crossrefs

Cf. A177447 (column 1), A215242 (column 2), A215243 (column 3); A133316 (row sums).
Cf. A214398 (unsigned matrix inverse).

Programs

  • Mathematica
    T[n_, k_] := Module[{M}, M = Table[Binomial[c^2 + r - c - 1, r - c], {r, 1, n}, {c, 1, n}]; (-1)^(n - k) Inverse[M][[n, k]]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 05 2023, after PARI program *)
  • PARI
    {T(n, k)=local(M=matrix(n,n,r,c,binomial(c^2+r-c-1, r-c)));(-1)^(n-k)*(M^-1)[n,k]}
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")); print(""))

Formula

G.f.: x*y/(1-x*y) = Sum_{n>=1} Sum_{k=1..n} T(n,k)*x^n*y^k/(1+x)^(n^2).
G.f. of column k: 1 = Sum_{n>=k} T(n,k)*x^(n-k)/(1+x)^(n^2).
Column 1 forms A177447.
Row sums form A133316.

A215242 G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^((n+2)^2).

Original entry on oeis.org

1, 4, 26, 256, 3489, 61696, 1352518, 35566368, 1094499820, 38670814348, 1545160614694, 68970980789472, 3404652821768232, 184295822142051600, 10861040169788302030, 692560292664515634112, 47527552597795293035916, 3493783983256399634130360, 273974326317024551368217200
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2012

Keywords

Comments

Column 2 of triangle A215241.

Examples

			G.f.: 1 = 1/(1+x)^4 + 4*x/(1+x)^9 + 26*x^2/(1+x)^16 + 256*x^3/(1+x)^25 + 3489*x^4/(1+x)^36 + 61696*x^5/(1+x)^49 +...
Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 2*n+1 times, starting with '[1,1,1,1]' in row 1, as illustrated by:
1, 1,  1,  1;
1, 2,  3,  4,  4,   4,   4,   4;
1, 3,  6, 10, 14,  18,  22,  26,  26,  26,  26,  26,  26,   26;
1, 4, 10, 20, 34,  52,  74, 100, 126, 152, 178, 204, 230,  256,  256,  256,  256,  256,  256,  256,  256,  256;
1, 5, 15, 35, 69, 121, 195, 295, 421, 573, 751, 955, 1185, 1441, 1697, 1953, 2209, 2465, 2721, 2977, 3233, 3489, 3489, 3489, 3489, 3489, 3489, 3489, 3489, 3489; ...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+x+x*O(x^n))^((k+2)^2)), n))}
    for(n=0,21,print1(a(n)", "))

A215243 G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^((n+3)^2).

Original entry on oeis.org

1, 9, 99, 1416, 25650, 569772, 15099042, 466865280, 16545757617, 662459717350, 29611195466373, 1463138718427008, 79255793863426950, 4673128560507694980, 298096897542679853190, 20462949699720864598464, 1504570012129788012314910, 118004419030927157257862025
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2012

Keywords

Comments

Column 3 of triangle A215241.

Examples

			G.f.: 1 = 1/(1+x)^9 + 9*x/(1+x)^16 + 99*x^2/(1+x)^25 + 1416*x^3/(1+x)^36 + 25650*x^4/(1+x)^49 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+x+x*O(x^n))^((k+3)^2)), n))}
    for(n=0,21,print1(a(n)", "))

A177448 G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(2*n^2) = 1+x.

Original entry on oeis.org

1, 1, 2, 13, 166, 3324, 92718, 3354712, 150206430, 8050991676, 504049958320, 36172232930282, 2931474921768206, 265078092222575572, 26480336590135734816, 2898139377307388441520, 345055687960080723910286
Offset: 0

Views

Author

Paul D. Hanna, May 09 2010

Keywords

Examples

			1+x = 1 + 1*x/(1+x)^2 + 2*x^2/(1+x)^8 + 13*x^3/(1+x)^18 + 166*x^4/(1+x)^32 + 3324*x^5/(1+x)^50 + 92718*x^6/(1+x)^72 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=1/(1+x+x*O(x^n)));polcoeff(1+x-sum(k=0,n-1,a(k)*x^k*F^(2*k^2)),n)}

Formula

a(n) = number of subpartitions of the partition [0,1,6,15,28,...,2(n-1)^2-(n-1)] for n>0 with a(0)=1. See A115728 for the definition of subpartitions.

A177449 G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(3*n^2) = 1+x.

Original entry on oeis.org

1, 1, 3, 30, 586, 17865, 756285, 41440056, 2805638310, 227131872654, 21459076173105, 2322336372705030, 283667666439112350, 38643426990067599005, 5813534115429573742587, 957883907138024944675200
Offset: 0

Views

Author

Paul D. Hanna, May 09 2010

Keywords

Examples

			1+x = 1 + 1*x/(1+x)^3 + 3*x^2/(1+x)^12 + 30*x^3/(1+x)^27 + 586*x^4/(1+x)^48 + 17865*x^5/(1+x)^75 + 756285*x^6/(1+x)^108 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(F=1/(1+x+x*O(x^n)));polcoeff(1+x-sum(k=0,n-1,a(k)*x^k*F^(3*k^2)),n)}

Formula

a(n) = number of subpartitions of the partition [0,2,10,24,44,...,3(n-1)^2-(n-1)] for n>0 with a(0)=1. See A115728 for the definition of subpartitions.

A229711 G.f.: Sum_{n>=0} a(n)*x^n / (1+x)^(n^3) = x.

Original entry on oeis.org

1, 1, 7, 154, 7329, 621054, 83287785, 16339143828, 4433073578739, 1595084475573057, 736780843688600494, 425703341782263982836, 301237142332910524156150, 256518292539312393631293756, 259004327874862610288497260501, 306183323229810278424153632807196
Offset: 1

Views

Author

Paul D. Hanna, Sep 27 2013

Keywords

Examples

			G.f.: x = 1*x/(1+x) + 1*x^2/(1+x)^8 + 7*x^3/(1+x)^27 + 154*x^4/(1+x)^64 + 7329*x^5/(1+x)^125 + 621054*x^6/(1+x)^216 + 83287785*x^7/(1+x)^343 +...
ALTERNATE GENERATING METHOD.
Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 3*n*(n-1)+1 times, starting with a '1' in row 1, as illustrated by:
1;
1, 1, 1, 1, 1, 1, 1;
1, 2, 3, 4, 5, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7;
1, 3, 6, 10, 15, 21, 28, 35, 42, 49, 56, 63, 70, 77, 84, 91, 98, 105, 112, 119, 126, 133, 140, 147, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154, 154; ...
MATRIX GENERATING METHOD.
Given triangle T(n, k) = binomial(k^3+n-k-1, n-k), such that the g.f. of column k equals 1/(1-x)^(k^3) for k>=1, which begins:
1;
1, 1;
1, 8, 1;
1, 36, 27, 1;
1, 120, 378, 64, 1;
1, 330, 3654, 2080, 125, 1;
1, 792, 27405, 45760, 7875, 216, 1;
1, 1716, 169911, 766480, 333375, 23436, 343, 1; ...
then this sequence forms column 1 (ignoring signs) of the matrix inverse:
1;
-1, 1;
7, -8, 1;
-154, 180, -27, 1;
7329, -8616, 1350, -64, 1;
-621054, 731502, -116244, 5920, -125, 1;
83287785, -98171784, 15685569, -820480, 19125, -216, 1;
-16339143828, 19265191212, -3085386984, 163253040, -3963750, 50652, -343, 1; ...
		

Crossrefs

Cf. A177447.

Programs

  • PARI
    /* GENERATING FUNCTION: */
    {a(n)=local(F=1/(1+x+x*O(x^n))); polcoeff(x-sum(k=1, n-1, a(k)*x^k*F^(k^3)), n)}
    for(n=1,20,print1(a(n),", "))
    
  • PARI
    /* SUMMATION METHOD: */
    {A=[1, 1]; for(i=1, 20, A=concat(A, -Vec(sum(n=0, #A-1, A[n+1]*x^n/(1+x+x*O(x^#A))^(n^3)))[#A+1])); for(n=1, #A-1, print1(A[n+1], ", "))}
    
  • PARI
    /* MATRIX METHOD: */
    {a(n)=local(M=matrix(n,n,r,c,if(r>=c,binomial(c^3+r-c-1, r-c))));-(-1)^n*(M^-1)[n,1]}
    for(n=1,20,print1(a(n),", "))

A229806 G.f.: Sum_{n>=1} a(n)*x^n / (1 + n*x)^(n^2) = x.

Original entry on oeis.org

1, 1, 7, 150, 6924, 569726, 74358042, 14229990742, 3774315375580, 1330122245198910, 602741550311798067, 342138788139339603446, 238146938124253555981224, 199695655908033678248780110, 198741234873020798204357773510, 231773141251670398730627959107510
Offset: 1

Views

Author

Paul D. Hanna, Oct 02 2013

Keywords

Comments

Compare to identity: Sum_{n>=1} n^(n-2) * x^n / (1 + n*x)^n = x.

Examples

			G.f.: x = 1*x/(1+x) + 1*x^2/(1+2*x)^4 + 7*x^3/(1+3*x)^9 + 150*x^4/(1+4*x)^16 + 6924*x^5/(1+5*x)^25 + 569726*x^6/(1+6*x)^36 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(x-sum(k=1, n-1, a(k)*x^k/(1+k*x+x*O(x^n))^(k^2)), n)}
    for(n=1,20,print1(a(n),", "))
Showing 1-9 of 9 results.