cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A177447 G.f.: Sum_{n>=0} a(n)*x^n/(1+x)^(n^2) = 1+x.

Original entry on oeis.org

1, 1, 1, 3, 18, 172, 2313, 40626, 887326, 23282964, 715540140, 25259729071, 1008721104654, 45008479039824, 2221170817590696, 120209722115431950, 7083266027910364710, 451620678137942740132, 30990400538494184551692, 2277988537997377457967690, 178626191260072536476398000
Offset: 0

Views

Author

Paul D. Hanna, May 09 2010

Keywords

Comments

Column 1 of triangle A215241.

Examples

			1+x = 1 + 1*x/(1+x) + 1*x^2/(1+x)^4 + 3*x^3/(1+x)^9 + 18*x^4/(1+x)^16 + 172*x^5/(1+x)^25 + 2313*x^6/(1+x)^36 +...
Also forms the final terms in rows of the triangle where row n+1 equals the partial sums of row n with the final term repeated 2n+1 times, starting with a '1' in row 0, as illustrated by:
  1;
  1, 1,  1;
  1, 2,  3,  3,  3,   3,   3;
  1, 3,  6,  9, 12,  15,  18,  18,  18,  18,  18,  18,  18;
  1, 4, 10, 19, 31,  46,  64,  82, 100, 118, 136, 154, 172,  172,  172,  172,  172,  172,  172,  172,  172;
  1, 5, 15, 34, 65, 111, 175, 257, 357, 475, 611, 765, 937, 1109, 1281, 1453, 1625, 1797, 1969, 2141, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 2313, 2313; ...
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, -add(a(j)
          *(-1)^(n-j)*binomial(1 +j*(j-1), n-j), j=0..n-1))
        end:
    seq(a(n), n=0..20);  # Alois P. Heinz, Jul 10 2022
  • PARI
    {a(n)=local(F=1/(1+x+x*O(x^n)));polcoeff(1+x-sum(k=0,n-1,a(k)*x^k*F^(k^2)),n)}
    
  • PARI
    {A=[1,1];for(i=1,40,A=concat(A,-Vec(sum(n=0,#A-1,A[n+1]*x^n/(1+x+x*O(x^#A))^(n^2)))[#A+1]));for(n=0,#A-1,print1(A[n+1],", "))}

Formula

a(n) = number of subpartitions of the partition [0,0,2,6,12,...,(n-1)^2-(n-1)] for n>0 with a(0)=1. See A115728 for the definition of subpartitions.
Generating functions:
(1) 1 + x = Sum_{n>=0} a(n) * x^n / (1+x)^(n^2).
(2) 1/(1-x) = Sum_{n>=0} a(n) * x^n * (1-x)^(n*(n-1)). - Paul D. Hanna, Apr 04 2022

A133316 G.f.: 1/(1-x) = Sum_{n>=0} a(n)*x^n/(1+x)^(n^2).

Original entry on oeis.org

1, 1, 2, 8, 54, 544, 7508, 133704, 2943194, 77589536, 2391477804, 84582890704, 3382005372970, 151034046369696, 7458091839548356, 403808650013237224, 23801728042233670770, 1517930142778063770304, 104179592763803229618620
Offset: 0

Views

Author

Paul D. Hanna, Dec 24 2010

Keywords

Examples

			1/(1-x) = 1 + x/(1+x) + 2*x^2/(1+x)^4 + 8*x^3/(1+x)^9 + 54*x^4/(1+x)^16 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(-(1-x)*sum(m=0,n-1,a(m)*x^m/(1+x +x*O(x^n))^(m^2)),n))}
    
  • PARI
    {a(n)=if(n==0, 1, 1 - sum(j=0, n-1, a(j)*(-1)^(n-j)*binomial(j^2+n-j-1, n-j)))}

Formula

a(n) = 1 - Sum_{j=0..n-1} a(j) * (-1)^(n-j) * C(j^2 + n-j-1, n-j) for n>0, with a(0)=1.

A215241 Unsigned matrix inverse of triangle A214398, as a triangle read by rows n >= 1.

Original entry on oeis.org

1, 1, 1, 3, 4, 1, 18, 26, 9, 1, 172, 256, 99, 16, 1, 2313, 3489, 1416, 264, 25, 1, 40626, 61696, 25650, 5120, 575, 36, 1, 887326, 1352518, 569772, 117980, 14450, 1098, 49, 1, 23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1, 715540140, 1094499820, 466865280, 100049120, 13259705, 1186857, 73696, 3104, 81, 1
Offset: 1

Views

Author

Paul D. Hanna, Aug 06 2012

Keywords

Examples

			Triangle begins:
         1;
         1,        1;
         3,        4,        1;
        18,       26,        9,       1;
       172,      256,       99,      16,      1;
      2313,     3489,     1416,     264,     25,     1;
     40626,    61696,    25650,    5120,    575,    36,    1;
    887326,  1352518,   569772,  117980,  14450,  1098,   49,  1;
  23282964, 35566368, 15099042, 3193728, 410850, 34608, 1911, 64, 1;
  ...
The matrix inverse is a signed version of triangle A214398:
   1;
  -1,   1;
   1,  -4,     1;
  -1,  10,    -9,    1;
   1, -20,    45,  -16,     1;
  -1,  35,  -165,  136,   -25,   1;
   1, -56,   495, -816,   325, -36,   1;
  -1,  84, -1287, 3876, -2925, 666, -49, 1; ...
in which the g.f. of column k is 1/(1+x)^(k^2) for k >= 1.
ILLUSTRATE G.F. OF COLUMNS:
k=1: 1 = 1/(1+x) + 1*x/(1+x)^4 + 3*x^2/(1+x)^9 + 18*x^3/(1+x)^16 + 172*x^4/(1+x)^25 + 2313*x^5/(1+x)^36 + 40626*x^6/(1+x)^49 + ...
k=2: 1 = 1/(1+x)^4 + 4*x/(1+x)^9 + 26*x^2/(1+x)^16 + 256*x^3/(1+x)^25 + 3489*x^4/(1+x)^36 + 61696*x^5/(1+x)^49 + ...
k=3: 1 = 1/(1+x)^9 + 9*x/(1+x)^16 + 99*x^2/(1+x)^25 + 1416*x^3/(1+x)^36 + 25650*x^4/(1+x)^49 + ...
k=4: 1 = 1/(1+x)^16 + 16*x/(1+x)^25 + 264*x^2/(1+x)^36 + 5120*x^3/(1+x)^49 + ...
		

Crossrefs

Cf. A177447 (column 1), A215242 (column 2), A215243 (column 3); A133316 (row sums).
Cf. A214398 (unsigned matrix inverse).

Programs

  • Mathematica
    T[n_, k_] := Module[{M}, M = Table[Binomial[c^2 + r - c - 1, r - c], {r, 1, n}, {c, 1, n}]; (-1)^(n - k) Inverse[M][[n, k]]];
    Table[T[n, k], {n, 1, 10}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 05 2023, after PARI program *)
  • PARI
    {T(n, k)=local(M=matrix(n,n,r,c,binomial(c^2+r-c-1, r-c)));(-1)^(n-k)*(M^-1)[n,k]}
    for(n=1, 12, for(k=1, n, print1(T(n, k), ", ")); print(""))

Formula

G.f.: x*y/(1-x*y) = Sum_{n>=1} Sum_{k=1..n} T(n,k)*x^n*y^k/(1+x)^(n^2).
G.f. of column k: 1 = Sum_{n>=k} T(n,k)*x^(n-k)/(1+x)^(n^2).
Column 1 forms A177447.
Row sums form A133316.

A215243 G.f.: 1 = Sum_{n>=0} a(n)*x^n/(1+x)^((n+3)^2).

Original entry on oeis.org

1, 9, 99, 1416, 25650, 569772, 15099042, 466865280, 16545757617, 662459717350, 29611195466373, 1463138718427008, 79255793863426950, 4673128560507694980, 298096897542679853190, 20462949699720864598464, 1504570012129788012314910, 118004419030927157257862025
Offset: 0

Views

Author

Paul D. Hanna, Aug 06 2012

Keywords

Comments

Column 3 of triangle A215241.

Examples

			G.f.: 1 = 1/(1+x)^9 + 9*x/(1+x)^16 + 99*x^2/(1+x)^25 + 1416*x^3/(1+x)^36 + 25650*x^4/(1+x)^49 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=if(n==0,1,polcoeff(1-sum(k=0, n-1, a(k)*x^k/(1+x+x*O(x^n))^((k+3)^2)), n))}
    for(n=0,21,print1(a(n)", "))
Showing 1-4 of 4 results.