A214398
Triangle where the g.f. of column k is 1/(1-x)^(k^2) for k>=1, as read by rows n>=1.
Original entry on oeis.org
1, 1, 1, 1, 4, 1, 1, 10, 9, 1, 1, 20, 45, 16, 1, 1, 35, 165, 136, 25, 1, 1, 56, 495, 816, 325, 36, 1, 1, 84, 1287, 3876, 2925, 666, 49, 1, 1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1, 1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1, 1, 220, 12870, 170544
Offset: 1
Triangle begins:
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1;
1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1;
1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1;
1, 220, 12870, 170544, 593775, 658008, 270725, 45760, 3321, 100, 1; ...
-
A214398 := proc(n,k)
binomial(k^2+n-k-1,n-k) ;
end proc:
seq(seq(A214398(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 03 2017
-
nmax = 11;
T[n_, k_] := SeriesCoefficient[1/(1-x)^(k^2), {x, 0, n-k}];
Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten
-
T(n,k)=binomial(k^2+n-k-1,n-k)
for(n=1,11,for(k=1,n,print1(T(n,k),", "));print(""))
A230050
G.f.: Sum_{n>=0} x^n / (1-x)^(n^3).
Original entry on oeis.org
1, 1, 2, 10, 65, 564, 6191, 82050, 1295263, 23764278, 499547080, 11892550569, 317112508944, 9392408105655, 306739296397827, 10973970687363844, 427724034697254939, 18073023112616933860, 824247511186225346295, 40415810147764633887442, 2123162727678797736474583
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 65*x^4 + 564*x^5 + 6191*x^6 + 82050*x^7 +...
where
A(x) = 1 + x/(1-x) + x^2/(1-x)^8 + x^3/(1-x)^27 + x^4/(1-x)^64 + x^5/(1-x)^125 + x^6/(1-x)^216 + x^7/(1-x)^343 +...
-
{a(n)=polcoeff(sum(k=0,n,x^k/(1-x+x*O(x^n))^(k^3)),n)}
for(n=0,25,print1(a(n),", "))
-
{a(n)=sum(k=0,n,binomial(k^3+n-k-1, n-k))}
for(n=0,25,print1(a(n),", "))
A227934
G.f.: Sum_{n>=0} x^n / (1-x)^(n^4).
Original entry on oeis.org
1, 1, 2, 18, 219, 4395, 129280, 4970984, 257765641, 16781325293, 1348125117404, 132465548869248, 15490711962965785, 2134540479514352751, 343307151209151099650, 63606662918084631874716, 13470938654397531939066909, 3238387688528230753569245297, 876825599524773154743990986391
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 18*x^3 + 219*x^4 + 4395*x^5 + 129280*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/(1-x)^16 + x^3/(1-x)^81 + x^4/(1-x)^256 + x^5/(1-x)^625 + x^6/(1-x)^1296 + x^7/(1-x)^2401 +...
-
{a(n)=polcoeff(sum(k=0,n,x^k/(1-x+x*O(x^n))^(k^4)),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=sum(k=0,n,binomial(k^4+n-k-1, n-k))}
for(n=0,20,print1(a(n),", "))
A227935
G.f.: Sum_{n>=0} x^n / (1-x)^(n^5).
Original entry on oeis.org
1, 1, 2, 34, 773, 36656, 3001377, 333647780, 58561139773, 13838291852092, 4280413527001849, 1779704699369214238, 931039792575220097699, 604786686422678514970170, 489307443863919174036440087, 478922652139578822529676247092, 560120417434857039499787289137249
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 34*x^3 + 773*x^4 + 36656*x^5 + 3001377*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/(1-x)^32 + x^3/(1-x)^243 + x^4/(1-x)^1024 + x^5/(1-x)^3125 + x^6/(1-x)^7776 +...
-
{a(n)=polcoeff(sum(k=0,n,x^k/(1-x+x*O(x^n))^(k^5)),n)}
for(n=0,20,print1(a(n),", "))
-
{a(n)=sum(k=0,n,binomial(k^5+n-k-1, n-k))}
for(n=0,20,print1(a(n),", "))
A325294
G.f. A(x) satisfies: Sum_{n>=0} x^n*A(x)^(n*(n+1)/2) = Sum_{n>=0} x^n/(1-x)^(n^2).
Original entry on oeis.org
1, 1, 2, 5, 17, 73, 368, 2074, 12663, 82236, 561664, 4004815, 29662508, 227413816, 1800063339, 14681764890, 123207630130, 1062547709801, 9407762681632, 85445941932906, 795514580068247, 7587015660017106, 74078917658328970, 740060483734580171, 7560421405484047766, 78939580213645975075, 841942979579094942598, 9168184497787176646141, 101876790751549107815492
Offset: 0
G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 17*x^4 + 73*x^5 + 368*x^6 + 2074*x^7 + 12663*x^8 + 82236*x^9 + 561664*x^10 + 4004815*x^11 + 29662508*x^12 + ...
such that the following series are equal:
B(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^6 + x^4*A(x)^10 + x^5*A(x)^15 + x^6*A(x)^21 + x^7*A(x)^28 + x^8*A(x)^36 + ...
B(x) = 1 + x/(1-x) + x^2/(1-x)^4 + x^3/(1-x)^9 + x^4/(1-x)^16 + x^5/(1-x)^25 + x^6/(1-x)^36 + x^7/(1-x)^49 + x^8/(1-x)^64 + ...
where
B(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 83*x^5 + 363*x^6 + 1730*x^7 + 8889*x^8 + 48829*x^9 + 284858*x^10 + 1755325*x^11 + ... + A178325(n)*x^n + ...
-
{a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
A[#A] = -polcoeff( sum(m=0, #A, x^m*( Ser(A)^(m*(m+1)/2) - 1/(1-x +x*O(x^#A))^(m^2)) ), #A) ); A[n+1]}
for(n=0, 30, print1(a(n), ", "))
A214400
a(n) = binomial(n^2 + 3*n, n).
Original entry on oeis.org
1, 4, 45, 816, 20475, 658008, 25827165, 1198774720, 64276915527, 3911395881900, 266401260897200, 20082459351180240, 1660305826125766950, 149389005978091284720, 14533945899753270066525, 1520398315196482557890304, 170190601112537814791748255
Offset: 0
-
seq(binomial(n^2+3*n,n),n=0..30); # Robert Israel, Mar 04 2022
-
a(n)=binomial(n^2+3*n, n)
A214403
Triangle, read by rows of terms T(n,k) for k=0..n^2, that starts with a '1' in row 0 with row n>0 consisting of 2*n-1 '1's followed by the partial sums of the prior row.
Original entry on oeis.org
1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 47, 62, 83, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 55, 68, 85, 107, 135, 171, 218, 280, 363
Offset: 0
Triangle begins:
[1];
[1, 1];
[1,1,1, 1, 2];
[1,1,1,1,1, 1,2,3, 4, 6];
[1,1,1,1,1,1,1, 1,2,3,4,5, 6,8,11, 15, 21];
[1,1,1,1,1,1,1,1,1, 1,2,3,4,5,6,7, 8,10,13,17,22, 28,36,47, 62, 83];
...
Row sums equal the row sums (A178325) of triangle A214398,
where A214398(n, k) = binomial(k^2+n-k-1, n-k):
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1;
...
-
{T(n, k)=if(k>n^2||n<0||k<0, 0, if(n==0,1,if(k<=2*n-1, 1, sum(i=0, k-2*n+1, T(n-1, i)))))}
for(n=0,10,for(k=0,n^2,print1(T(n,k),", "));print(""))
A178323
Numbers n such that phi(reversal(n)) + sigma(reversal(n)) = n.
Original entry on oeis.org
572, 592, 5992, 599992, 2014080, 5999992, 594637872, 599999992, 599999999992
Offset: 1
2014080 = phi(804102) + sigma(804102), so 2014080 is in the sequence.
-
r[n_]:=FromDigits[Reverse[IntegerDigits[n]]];
Do[If[EulerPhi[r[n]]+DivisorSigma[1,r[n]]==n,Print[n]],{n,1000000000}]
Showing 1-8 of 8 results.
Comments