cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A214398 Triangle where the g.f. of column k is 1/(1-x)^(k^2) for k>=1, as read by rows n>=1.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 10, 9, 1, 1, 20, 45, 16, 1, 1, 35, 165, 136, 25, 1, 1, 56, 495, 816, 325, 36, 1, 1, 84, 1287, 3876, 2925, 666, 49, 1, 1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1, 1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1, 1, 220, 12870, 170544
Offset: 1

Views

Author

Paul D. Hanna, Jul 15 2012

Keywords

Comments

This is also the array A(n,k) read upwards antidiagonals, where the entry in row n and column k counts the vertex-labeled digraphs with n arcs and k vertices, allowing multi-edges and multi-loops (labeled analog to A138107). The binomial formula counts the weak compositions of distributing n arcs over the k^2 positions in the adjacency matrix. - R. J. Mathar, Aug 03 2017

Examples

			Triangle begins:
1;
1, 1;
1, 4, 1;
1, 10, 9, 1;
1, 20, 45, 16, 1;
1, 35, 165, 136, 25, 1;
1, 56, 495, 816, 325, 36, 1;
1, 84, 1287, 3876, 2925, 666, 49, 1;
1, 120, 3003, 15504, 20475, 8436, 1225, 64, 1;
1, 165, 6435, 54264, 118755, 82251, 20825, 2080, 81, 1;
1, 220, 12870, 170544, 593775, 658008, 270725, 45760, 3321, 100, 1; ...
		

Crossrefs

Cf. A214400 (central terms), A178325 (row sums), A054688, A000290 (1st subdiagonal), A037270 (2nd subdiagonal).
Cf. A230049.

Programs

  • Maple
    A214398 := proc(n,k)
        binomial(k^2+n-k-1,n-k) ;
    end proc:
    seq(seq(A214398(n,k),k=1..n),n=1..10) ; # R. J. Mathar, Aug 03 2017
  • Mathematica
    nmax = 11;
    T[n_, k_] := SeriesCoefficient[1/(1-x)^(k^2), {x, 0, n-k}];
    Table[T[n, k], {n, 1, nmax}, {k, 1, n}] // Flatten
  • PARI
    T(n,k)=binomial(k^2+n-k-1,n-k)
    for(n=1,11,for(k=1,n,print1(T(n,k),", "));print(""))

Formula

T(n,k) = binomial(k^2+n-k-1, n-k).
Row sums form A178325.
Central terms form A214400.
T(n,n-2) = A037270(n-2). - R. J. Mathar, Aug 03 2017
T(n,n-3) = (n^2-6*n+11)*(n^2-6*n+10)*(n-3)^2 /6. - R. J. Mathar, Aug 03 2017

A230050 G.f.: Sum_{n>=0} x^n / (1-x)^(n^3).

Original entry on oeis.org

1, 1, 2, 10, 65, 564, 6191, 82050, 1295263, 23764278, 499547080, 11892550569, 317112508944, 9392408105655, 306739296397827, 10973970687363844, 427724034697254939, 18073023112616933860, 824247511186225346295, 40415810147764633887442, 2123162727678797736474583
Offset: 0

Views

Author

Paul D. Hanna, Oct 06 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 65*x^4 + 564*x^5 + 6191*x^6 + 82050*x^7 +...
where
A(x) = 1 + x/(1-x) + x^2/(1-x)^8 + x^3/(1-x)^27 + x^4/(1-x)^64 + x^5/(1-x)^125 + x^6/(1-x)^216 + x^7/(1-x)^343 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(k=0,n,x^k/(1-x+x*O(x^n))^(k^3)),n)}
    for(n=0,25,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,binomial(k^3+n-k-1, n-k))}
    for(n=0,25,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} binomial(k^3 + n-k-1, n-k).
Equals row sums of triangle A230049.

A227934 G.f.: Sum_{n>=0} x^n / (1-x)^(n^4).

Original entry on oeis.org

1, 1, 2, 18, 219, 4395, 129280, 4970984, 257765641, 16781325293, 1348125117404, 132465548869248, 15490711962965785, 2134540479514352751, 343307151209151099650, 63606662918084631874716, 13470938654397531939066909, 3238387688528230753569245297, 876825599524773154743990986391
Offset: 0

Views

Author

Paul D. Hanna, Oct 06 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 18*x^3 + 219*x^4 + 4395*x^5 + 129280*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/(1-x)^16 + x^3/(1-x)^81 + x^4/(1-x)^256 + x^5/(1-x)^625 + x^6/(1-x)^1296 + x^7/(1-x)^2401 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(k=0,n,x^k/(1-x+x*O(x^n))^(k^4)),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,binomial(k^4+n-k-1, n-k))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} binomial(k^4 + n-k-1, n-k).

A227935 G.f.: Sum_{n>=0} x^n / (1-x)^(n^5).

Original entry on oeis.org

1, 1, 2, 34, 773, 36656, 3001377, 333647780, 58561139773, 13838291852092, 4280413527001849, 1779704699369214238, 931039792575220097699, 604786686422678514970170, 489307443863919174036440087, 478922652139578822529676247092, 560120417434857039499787289137249
Offset: 0

Views

Author

Paul D. Hanna, Oct 06 2013

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 34*x^3 + 773*x^4 + 36656*x^5 + 3001377*x^6 +...
where
A(x) = 1 + x/(1-x) + x^2/(1-x)^32 + x^3/(1-x)^243 + x^4/(1-x)^1024 + x^5/(1-x)^3125 + x^6/(1-x)^7776 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=polcoeff(sum(k=0,n,x^k/(1-x+x*O(x^n))^(k^5)),n)}
    for(n=0,20,print1(a(n),", "))
    
  • PARI
    {a(n)=sum(k=0,n,binomial(k^5+n-k-1, n-k))}
    for(n=0,20,print1(a(n),", "))

Formula

a(n) = Sum_{k=0..n} binomial(k^5 + n-k-1, n-k).

A325294 G.f. A(x) satisfies: Sum_{n>=0} x^n*A(x)^(n*(n+1)/2) = Sum_{n>=0} x^n/(1-x)^(n^2).

Original entry on oeis.org

1, 1, 2, 5, 17, 73, 368, 2074, 12663, 82236, 561664, 4004815, 29662508, 227413816, 1800063339, 14681764890, 123207630130, 1062547709801, 9407762681632, 85445941932906, 795514580068247, 7587015660017106, 74078917658328970, 740060483734580171, 7560421405484047766, 78939580213645975075, 841942979579094942598, 9168184497787176646141, 101876790751549107815492
Offset: 0

Views

Author

Paul D. Hanna, Apr 25 2019

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 5*x^3 + 17*x^4 + 73*x^5 + 368*x^6 + 2074*x^7 + 12663*x^8 + 82236*x^9 + 561664*x^10 + 4004815*x^11 + 29662508*x^12 + ...
such that the following series are equal:
B(x) = 1 + x*A(x) + x^2*A(x)^3 + x^3*A(x)^6 + x^4*A(x)^10 + x^5*A(x)^15 + x^6*A(x)^21 + x^7*A(x)^28 + x^8*A(x)^36 + ...
B(x) = 1 + x/(1-x) + x^2/(1-x)^4 + x^3/(1-x)^9 + x^4/(1-x)^16 + x^5/(1-x)^25 + x^6/(1-x)^36 + x^7/(1-x)^49 + x^8/(1-x)^64 + ...
where
B(x) = 1 + x + 2*x^2 + 6*x^3 + 21*x^4 + 83*x^5 + 363*x^6 + 1730*x^7 + 8889*x^8 + 48829*x^9 + 284858*x^10 + 1755325*x^11 + ... + A178325(n)*x^n + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=[1]); for(i=1, n, A = concat(A, 0);
    A[#A] = -polcoeff( sum(m=0, #A, x^m*( Ser(A)^(m*(m+1)/2) - 1/(1-x +x*O(x^#A))^(m^2)) ), #A) ); A[n+1]}
    for(n=0, 30, print1(a(n), ", "))

A214400 a(n) = binomial(n^2 + 3*n, n).

Original entry on oeis.org

1, 4, 45, 816, 20475, 658008, 25827165, 1198774720, 64276915527, 3911395881900, 266401260897200, 20082459351180240, 1660305826125766950, 149389005978091284720, 14533945899753270066525, 1520398315196482557890304, 170190601112537814791748255
Offset: 0

Views

Author

Paul D. Hanna, Jul 15 2012

Keywords

Comments

Equals the central terms of triangle A214398.

Crossrefs

Programs

  • Maple
    seq(binomial(n^2+3*n,n),n=0..30); # Robert Israel, Mar 04 2022
  • PARI
    a(n)=binomial(n^2+3*n, n)

Formula

a(n) = [x^n] 1/(1 - x)^((n+1)^2). - Ilya Gutkovskiy, Oct 04 2017
a(n) ~ n^(n-1/2)*exp(n+5/2)/sqrt(2*Pi). - Robert Israel, Mar 04 2022

A214403 Triangle, read by rows of terms T(n,k) for k=0..n^2, that starts with a '1' in row 0 with row n>0 consisting of 2*n-1 '1's followed by the partial sums of the prior row.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 3, 4, 6, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 8, 11, 15, 21, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 10, 13, 17, 22, 28, 36, 47, 62, 83, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 19, 24, 30, 37, 45, 55, 68, 85, 107, 135, 171, 218, 280, 363
Offset: 0

Views

Author

Paul D. Hanna, Jul 15 2012

Keywords

Comments

Right border and row sums form A178325.

Examples

			Triangle begins:
  [1];
  [1, 1];
  [1,1,1, 1, 2];
  [1,1,1,1,1, 1,2,3, 4, 6];
  [1,1,1,1,1,1,1, 1,2,3,4,5, 6,8,11, 15, 21];
  [1,1,1,1,1,1,1,1,1, 1,2,3,4,5,6,7, 8,10,13,17,22, 28,36,47, 62, 83];
  ...
Row sums equal the row sums (A178325) of triangle A214398,
where A214398(n, k) = binomial(k^2+n-k-1, n-k):
  1;
  1, 1;
  1, 4, 1;
  1, 10, 9, 1;
  1, 20, 45, 16, 1;
  1, 35, 165, 136, 25, 1;
  1, 56, 495, 816, 325, 36, 1;
  1, 84, 1287, 3876, 2925, 666, 49, 1;
  ...
		

Crossrefs

Programs

  • PARI
    {T(n, k)=if(k>n^2||n<0||k<0, 0, if(n==0,1,if(k<=2*n-1, 1, sum(i=0, k-2*n+1, T(n-1, i)))))}
    for(n=0,10,for(k=0,n^2,print1(T(n,k),", "));print(""))

A178323 Numbers n such that phi(reversal(n)) + sigma(reversal(n)) = n.

Original entry on oeis.org

572, 592, 5992, 599992, 2014080, 5999992, 594637872, 599999992, 599999999992
Offset: 1

Views

Author

Farideh Firoozbakht, May 28 2010

Keywords

Comments

If n is in the sequence A070272 then reversal(n) is in this sequence. 10 divides all other terms of the sequence. 2014080 is the only known such term.
If p=6*10^n-1 is a prime greater than 5 then reversal(5*p) is in the sequence, see comment lines of A070272.
There is no further term up to 10^9.
10^12 < a(10) <= 1442827967760. - Giovanni Resta, Sep 04 2018

Examples

			2014080 = phi(804102) + sigma(804102), so 2014080 is in the sequence.
		

Crossrefs

Programs

  • Mathematica
    r[n_]:=FromDigits[Reverse[IntegerDigits[n]]];
    Do[If[EulerPhi[r[n]]+DivisorSigma[1,r[n]]==n,Print[n]],{n,1000000000}]

Extensions

a(9) from Giovanni Resta, Sep 04 2018
Showing 1-8 of 8 results.