cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Saibal Mitra

Saibal Mitra's wiki page.

Saibal Mitra has authored 13 sequences. Here are the ten most recent ones:

A364088 Number of directed multigraphs with loops containing n edges and an infinite number of vertices modulo isomorphism and reversal of all edge directions.

Original entry on oeis.org

1, 2, 9, 37, 186, 985, 5953, 38689, 271492, 2016845, 15767277, 128792803, 1094819196, 9652396448, 88040449618, 829019941267, 8044691126159, 80322444793338, 824036583310711, 8675576699596604, 93627696274152013
Offset: 0

Author

Saibal Mitra, Jul 04 2023

Keywords

Crossrefs

Cf. A052171 (without identifying graphs obtained from each other by reversal of all edge directions).

A363163 Number of directed multigraphs without loops containing n edges and an infinite number of vertices modulo isomorphism and reversal of all edge directions.

Original entry on oeis.org

1, 1, 5, 17, 83, 394, 2278, 13949, 93898, 670003, 5059914, 40033149, 330555726, 2836763749, 25233047351, 232080785282, 2202802051834, 21539083861802, 216638327167235, 2238260395921444, 23725940481578999
Offset: 0

Author

Saibal Mitra, Jul 07 2023

Keywords

Crossrefs

Cf. A364088 (with loops).

A092373 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by one loop is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 29, 98, 6081, 63697, 9938153, 312541502, 129127963303, 12001054360838, 13446619579882992, 3659571122336231532, 11267548349231085351832, 8927178836248655700988852, 76148331063818213217859922220
Offset: 2

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 1], {n, 2, 20}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m- 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 1).

A092374 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by two loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 351, 1274, 744189, 8947743, 11416135802, 434427086992, 1338566241796974, 157000849238433534, 1228161523785291020355, 436532099633273680844304, 8925012390072153509699100030, 9502129655604190413091924623054
Offset: 4

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 2], {n, 4, 20}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m-2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 2).

A092375 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by three loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 4707, 17576, 112088578, 1441214058, 17605459620761, 743370332504726, 19997068111196867031, 2689483333931146069897, 171415422163184300298223345, 71911782152540818802247981150
Offset: 6

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 3], {n, 6, 20}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 3).

A092376 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by four loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 66197, 250952, 18952950999, 253708881459, 32572923537006164, 1470573601262677388, 380591600530893567736185, 56147188534659327496920501, 32148338107501290909364945321743
Offset: 8

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 4], {n, 8, 26}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = C_{n/2-m}(n) + Sum_{r=1..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 4).

A092377 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by five loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 956385, 3660540, 3447133563336, 47425519612650, 68120063087909550454, 3225625946195290369800, 8591036125440276726886638297, 1356789922392932853852561183624, 7479333946536834590456926740361593541
Offset: 10

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 5], {n, 10, 30}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = C_{n/2-m}(n) + Sum_{r=1..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m- 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 5).

A092378 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by six loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 14061141, 54177740, 659506609478464, 9256643548177084, 155695310201316677915943, 7642657907144601059593232, 220353621720787947087602631723527
Offset: 12

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2-m -2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 6], {n, 12, 30}] (* G. C. Greubel, Nov 15 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2 - m - 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 - m - 2*r}(n) - C_{(n-1)/2 - m - 2*r - 1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 6).

A092380 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by eight loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 3143981871, 12219117170, 26773657259138210984, 386199802888523031294, 982474651752126202075575490369, 50748123995890025746709567402256, 191795630733414647568032678703215924098176
Offset: 16

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, 0, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 8], {n, 16, 40}] (* G. C. Greubel, Nov 16 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m-2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 8).

Extensions

More terms added by G. C. Greubel, Nov 16 2019

A092381 The O(1) loop model on the square lattice is defined as follows: At every vertex the loop turns to the left or to the right with equal probability, unless the vertex has been visited before, in which case the loop leaves the vertex via the unused edge. Every vertex is visited twice. The probability that a face of the lattice on an n X infinity cylinder is surrounded by nine loops is conjectured to be given by a(n)/A_{HT}(n)^2, where A_{HT}(n) is the number of n X n half turn symmetric alternating sign matrices.

Original entry on oeis.org

1, 1, 47564380971, 185410909790, 5599434135148010392903, 81562945655108319592717, 2647122748975437613370942794822122, 139318635878972598351963980703033608, 6292966726927006717847495753884145618797281792
Offset: 18

Author

Saibal Mitra (smitra(AT)zonnet.nl), Mar 20 2004

Keywords

Programs

  • Mathematica
    M[n_, k_]:= Table[Binomial[i+j-2, i-1], {i, n}, {j, k}];
    c[k_, n_]:= Coefficient[CharacteristicPolynomial[M[n, n], x], x, k]//Abs;
    Q[n_?EvenQ, m_]:= c[(n-2*m)/2, n] + Sum[(-1)^r*((m+2*r)/(m+r))*Binomial[m +r, r]*c[n/2 -m-2*r, n], {r, (n-2*m)/4}];
    Q[n_?OddQ, m_]:= Sum[(-1)^r*Binomial[m+r, r]*(c[(n-1)/2 -m-2*r, n] - c[(n-1)/2 -m-2*r-1, n]), {r, 0, (n-2*m-1)/4}];
    Table[Q[n, 9], {n, 18, 40}] (* G. C. Greubel, Nov 16 2019 *)

Formula

Even n: Q(n, m) = Sum_{r=0..(n-2*m)/4} (-1)^r * ((m+2*r)/(m+r)) * binomial(m+r, r) * C_{n/2-m- 2*r}(n).
Odd n: Q(n, m) = Sum_{r=0..(n-2*m-1)/4)} (-1)^r * binomial(m+r,r) * ( C_{(n-1)/2 -m-2*r}(n) - C_{(n-1)/2 -m-2*r-1}(n) ), where the c_{k}(n) are the absolute values of the coefficients of the characteristic polynomial of the n X n Pascal matrix P_{i, j} = binomial(i+j-2, i-1). The sequence is given by Q(n, 9).

Extensions

More terms added by G. C. Greubel, Nov 16 2019